PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro 
Scientifica  2014;2014:930318.
Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium) in vitro and to identify appropriate combination(s) for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin) or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa). Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia.
doi:10.1155/2014/930318
PMCID: PMC4020298  PMID: 24876994
2.  Genetic and historic evidence for climate-driven population fragmentation in a top cetacean predator: the harbour porpoises in European water 
Recent climate change has triggered profound reorganization in northeast Atlantic ecosystems, with substantial impact on the distribution of marine assemblages from plankton to fishes. However, assessing the repercussions on apex marine predators remains a challenging issue, especially for pelagic species. In this study, we use Bayesian coalescent modelling of microsatellite variation to track the population demographic history of one of the smallest temperate cetaceans, the harbour porpoise (Phocoena phocoena) in European waters. Combining genetic inferences with palaeo-oceanographic and historical records provides strong evidence that populations of harbour porpoises have responded markedly to the recent climate-driven reorganization in the eastern North Atlantic food web. This response includes the isolation of porpoises in Iberian waters from those further north only approximately 300 years ago with a predominant northward migration, contemporaneous with the warming trend underway since the ‘Little Ice Age’ period and with the ongoing retreat of cold-water fishes from the Bay of Biscay. The extinction or exodus of harbour porpoises from the Mediterranean Sea (leaving an isolated relict population in the Black Sea) has lacked a coherent explanation. The present results suggest that the fragmentation of harbour distribution range in the Mediterranean Sea was triggered during the warm ‘Mid-Holocene Optimum’ period (approx. 5000 years ago), by the end of the post-glacial nutrient-rich ‘Sapropel’ conditions that prevailed before that time.
doi:10.1098/rspb.2010.0412
PMCID: PMC2981983  PMID: 20444724
cetacean; climate change; habitat fragmentation; population genetics; coalescence
3.  Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters 
BMC Biology  2007;5:30.
Background
Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.
Results
Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.
Conclusion
The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.
doi:10.1186/1741-7007-5-30
PMCID: PMC1971045  PMID: 17651495
4.  Habitat structure and the dispersal of male and female bottlenose dolphins (Tursiops truncatus) 
Bottlenose dolphins (Tursiops truncatus) are widely distributed and a high degree of morphometric and genetic differentiation has been found among both allopatric and parapatric populations. We analysed 145 samples along a contiguous distributional range from the Black Sea to the eastern North Atlantic for mitochondrial and nuclear genetic diversity, and found population structure with boundaries that coincided with transitions between habitat regions. These regions can be characterized by ocean floor topography, and oceanographic features such as surface salinity, productivity and temperature. At the extremes of this range there was evidence for the directional emigration of females. Bi-parentally inherited markers did not show this directional bias in migration, suggesting a different dispersal strategy for males and females at range margins. However, comparative assessment based on mitochondrial DNA and nuclear markers indicated that neither sex showed a strong bias for greater dispersal on average. These data imply a mechanism for the evolutionary structuring of populations based on local habitat dependence for both males and females.
doi:10.1098/rspb.2005.3076
PMCID: PMC1564106  PMID: 16024385
bottlenose dolphin; population genetics; Mediterranean Sea; Black Sea; sex-biased dispersal

Results 1-4 (4)