PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone 
Background
Ring species, exemplified by salamanders of the Ensatina eschscholtzii complex, represent a special window into the speciation process because they allow the history of species formation to be traced back in time through the geographically differentiated forms connecting the two terminal forms of the ring. Of particular interest is the nature and extent of reproductive isolation between the geographically terminal forms, in this case E. e. eschscholtzii and E. e. klauberi. Previous studies have documented infrequent hybridization at the end of the ring. Here, we report the first fine-scale genetic analysis of a hybrid zone between the terminal forms in southern California using individual-based Bayesian analyses of multilocus genetic data to estimate levels and direction of hybridization and maximum-likelihood analysis of linkage disequilibrium and cline shape to make inferences about migration and selection in the hybrid zone.
Results
The center of the hybrid zone has a high proportion of hybrids, about half of which were classified as F1s. Clines are narrow with respect to dispersal, and there are significant deviations from Hardy-Weinberg equilibrium as well as nonrandom associations (linkage disequilibria) between alleles characteristic of each parental type. There is cytonuclear discordance, both in terms of introgression and the geographic position of mitochondrial versus nuclear clines. Genetic disequilibrium is concentrated on the eschscholtzii side of the zone. Nearly all hybrids possess klauberi mtDNA, indicating that most hybrids are formed from female klauberi mating with male eschscholtzii or male hybrids (but not vice versa).
Conclusions
Our results are consistent with a tension zone trapped at an ecotone, with gene combinations characteristic of klauberi showing up on the eschscholtzii side of the zone due to asymmetric hybridization. We suggest that the observed asymmetry is best explained by increased discriminatory power of eschscholtzii females, or asymmetric postzygotic isolation. The relatively high frequency of hybrids, particularly F1s, contrasts with other contacts between the terminal forms, and with other contacts between other divergent Ensatina lineages, highlighting the diverse outcomes of secondary contact within a single species complex.
doi:10.1186/1471-2148-11-245
PMCID: PMC3175475  PMID: 21859447
2.  Genetic conflict outweighs heterogametic incompatibility in the mouse hybrid zone? 
Background
The Mus musculus musculus/M. m. domesticus contact zone in Europe is characterised by sharp frequency discontinuities for sex chromosome markers at the centre of wider clines in allozyme frequencies.
Results
We identify a triangular area (approximately 330 km2) where the musculus Y chromosome introgresses across this front for up to 22 km into domesticus territory. Introgression of the Y chromosome is accompanied by a perturbation of the census sex ratio: the sex ratio is significantly female biased in musculus localities and domesticus localities lacking Y chromosome introgression. In contrast, where the musculus Y is detected in domesticus localities, the sex ratio is close to parity, and significantly different from both classes of female biased localities. The geographic position of an abrupt cline in an X chromosome marker, and autosomal clines centred on the same position, seem unaffected by the musculus Y introgression.
Conclusion
We conclude that sex ratio distortion is playing a role in the geographic separation of speciation genes in this section of the mouse hybrid zone. We suggest that clines for genes involved in sex-ratio distortion have escaped from the centre of the mouse hybrid zone, causing a decay in the barrier to gene flow between the two house mouse taxa.
doi:10.1186/1471-2148-8-271
PMCID: PMC2576241  PMID: 18834509
3.  Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters 
BMC Biology  2007;5:30.
Background
Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.
Results
Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.
Conclusion
The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.
doi:10.1186/1741-7007-5-30
PMCID: PMC1971045  PMID: 17651495

Results 1-3 (3)