PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Complete Khoisan and Bantu genomes from southern Africa 
Nature  2010;463(7283):943-947.
The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial1 and small sets of nuclear markers2 have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans1,3. However, until now, fully sequenced human genomes have been limited to recently diverged populations4–8. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.
doi:10.1038/nature08795
PMCID: PMC3890430  PMID: 20164927
2.  Complex Patterns of Genomic Admixture within Southern Africa 
PLoS Genetics  2013;9(3):e1003309.
Within-population genetic diversity is greatest within Africa, while between-population genetic diversity is directly proportional to geographic distance. The most divergent contemporary human populations include the click-speaking forager peoples of southern Africa, broadly defined as Khoesan. Both intra- (Bantu expansion) and inter-continental migration (European-driven colonization) have resulted in complex patterns of admixture between ancient geographically isolated Khoesan and more recently diverged populations. Using gender-specific analysis and almost 1 million autosomal markers, we determine the significance of estimated ancestral contributions that have shaped five contemporary southern African populations in a cohort of 103 individuals. Limited by lack of available data for homogenous Khoesan representation, we identify the Ju/'hoan (n = 19) as a distinct early diverging human lineage with little to no significant non-Khoesan contribution. In contrast to the Ju/'hoan, we identify ancient signatures of Khoesan and Bantu unions resulting in significant Khoesan- and Bantu-derived contributions to the Southern Bantu amaXhosa (n = 15) and Khoesan !Xun (n = 14), respectively. Our data further suggests that contemporary !Xun represent distinct Khoesan prehistories. Khoesan assimilation with European settlement at the most southern tip of Africa resulted in significant ancestral Khoesan contributions to the Coloured (n = 25) and Baster (n = 30) populations. The latter populations were further impacted by 170 years of East Indian slave trade and intra-continental migrations resulting in a complex pattern of genetic variation (admixture). The populations of southern Africa provide a unique opportunity to investigate the genomic variability from some of the oldest human lineages to the implications of complex admixture patterns including ancient and recently diverged human lineages.
Author Summary
The Khoesan have received recent attention, as they are the most genetically diverse contemporary human populations. However, Khoesan populations are poorly defined, while archeological evidence suggests a once broader dispersal of click-speaking southern African foragers. Migrations into the regions populated by contemporary Khoesan involved agro-pastoral Bantu around 1,500 years ago, followed over a millennium later by the arrival of European colonists establishing a halfway station for a maritime route between Europe and the East, which led to unions between diverse global populations. Using almost a million genetic markers for 103 individuals, we confirmed a significant Khoesan contribution to five southern African populations. The Ju/'hoan show genetic isolation (early divergence from all other modern humans), carry no significant non-Khoesan contributions, and unlike most global populations lack signatures of gene-based adaption to agriculture. The !Xun show two distinct Khoesan prehistories; while comparable to the female-derived Khoesan contribution to the amaXhosa Bantu, the male-derived Bantu contribution to the !Xun most likely represents cultural-driven gender-biased gene-flow. Emanating largely from male-derived European ancestral contributions, the Basters showed the highest maternal Khoesan contribution, while the Coloured showed the largest within population and regional-associated variability. The unique admixture fractions of the two latter populations reflect both early diverged and recently diverged human lineages.
doi:10.1371/journal.pgen.1003309
PMCID: PMC3597481  PMID: 23516368
3.  Inflammatory Genetic Markers of Prostate Cancer Risk 
Cancers  2010;2(2):1198-1220.
Prostate cancer is the most common cancer in Western society males, with incidence rates predicted to rise with global aging. Etiology of prostate cancer is however poorly understood, while current diagnostic tools can be invasive (digital rectal exam or biopsy) and/or lack specificity for the disease (prostate-specific antigen (PSA) testing). Substantial histological, epidemiological and molecular genetic evidence indicates that inflammation is important in prostate cancer pathogenesis. In this review, we summarize the current status of inflammatory genetic markers influencing susceptibility to prostate cancer. The focus will be on inflammatory cytokines regulating T-helper cell and chemokine homeostasis, together with the Toll-like receptors as key players in the host innate immune system. Although association studies indicating a genetic basis for prostate cancer are presently limited mainly due to lack of replication, larger and more ethnically and clinically defined study populations may help elucidate the true contribution of inflammatory gene variants to prostate cancer risk.
doi:10.3390/cancers2021198
PMCID: PMC3835126  PMID: 24281113
prostate cancer; inflammation; Toll like receptor (TLR); cytokine; chemokine; gene variant; inherited susceptibility
4.  Interpretation of custom designed Illumina genotype cluster plots for targeted association studies and next-generation sequence validation 
BMC Research Notes  2010;3:39.
Background
High-throughput custom designed genotyping arrays are a valuable resource for biologically focused research studies and increasingly for validation of variation predicted by next-generation sequencing (NGS) technologies. We investigate the Illumina GoldenGate chemistry using custom designed VeraCode and sentrix array matrix (SAM) assays for each of these applications, respectively. We highlight applications for interpretation of Illumina generated genotype cluster plots to maximise data inclusion and reduce genotyping errors.
Findings
We illustrate the dramatic effect of outliers in genotype calling and data interpretation, as well as suggest simple means to avoid genotyping errors. Furthermore we present this platform as a successful method for two-cluster rare or non-autosomal variant calling. The success of high-throughput technologies to accurately call rare variants will become an essential feature for future association studies. Finally, we highlight additional advantages of the Illumina GoldenGate chemistry in generating unusually segregated cluster plots that identify potential NGS generated sequencing error resulting from minimal coverage.
Conclusions
We demonstrate the importance of visually inspecting genotype cluster plots generated by the Illumina software and issue warnings regarding commonly accepted quality control parameters. In addition to suggesting applications to minimise data exclusion, we propose that the Illumina cluster plots may be helpful in identifying potential in-put sequence errors, particularly important for studies to validate NGS generated variation.
doi:10.1186/1756-0500-3-39
PMCID: PMC2848685  PMID: 20175893
5.  Risk for HIV-1 Infection Associated With a Common CXCL12 (SDF1) Polymorphism and CXCR4 Variation in an African Population 
Summary
CXC chemokine ligand 12 (CXCL12), or stromal cell–derived factor 1 (SDF1), is the only known natural ligand for the HIV-1 coreceptor, CXC chemokine receptor 4 (CXCR4). A single nucleotide polymorphism (SNP) in the CXCL12 gene (SDF1-3′A) has been associated with disease progression to AIDS in some studies, but not others. Mutations in the CXCR4 gene are generally rare and have not been implicated in HIV-1/AIDS pathogenesis. This study analyzed the SDF1-3′A SNP and performed mutation screening for polymorphic markers in the CXCR4 gene to determine the presence or absence of significant associations with susceptibility to HIV-1 infection. The study consisted of 257 HIV-1–seropositive patients and 113 HIV-1–seronegative controls representing a sub-Saharan African population belonging to the Xhosa ethnic group of South Africa. The SDF1-3′A SNP was associated with an increased risk for HIV-1 infection (P = 0.0319) whereas no significant association was observed between the occurrence of the SDF1-3′A SNP and increased or decreased plasma levels of CXCL12. Comprehensive mutation analysis of the CXCR4 gene confirmed a high degree of genetic conservation within the coding region of this ancient population.
PMCID: PMC1369993  PMID: 16284526
CXC chemokine ligand 12 (CXCL12); CXC chemokine receptor 4 (CXCR4); SDF1-3′A single-nucleotide polymorphism; HIV-1 infection risk; African population

Results 1-5 (5)