Search tips
Search criteria

Results 1-25 (118)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions 
Journal of Heredity  2014;105(4):493-505.
Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species.
PMCID: PMC4048552  PMID: 24620003
Acinonyx jubatus; Felis catus; major histocompatibility complex; Panthera leo
2.  Evaluation of non-viral risk factors for nasopharyngeal carcinoma in a high-risk population of Southern China 
To understand the role of environmental and genetic influences on nasopharyngeal carcinoma (NPC) in populations at high risk of NPC, we have performed a case-control study in Guangxi Province of Southern China in 2004-2005. NPC cases (n=1049) were compared to 785 NPC-free matched controls who were seropositive for IgA antibodies (IgA) to Epstein-Barr virus (EBV) capsid antigen (VCA)—a predictive marker for NPC in Chinese populations. A questionnaire was used to capture exposure and NPC family history data. Risk factors associated with NPC in a multivariant analysis model were the following: 1) a first, second or third degree relative with NPC [Attributable risk (AR)= 6%, Odds ratio (OR) = 3.1, 95%CI = 2.0-4.9, p < 0.001]; 2) consumption of salted fish 3 or more than 3 times per month (AR=3%, OR = 1.9, 95%CI = 1.1-3.5, p = 0.035); 3) exposure to domestic wood cooking fires for more than 10 years (AR=69%, OR = 5.8, 95%CI = 2.5-13.6, p < 0.001); and 4) exposure to occupational solvents for 10 or less years (AR=4%, OR = 2.6, 95%CI = 1.4-4.8, p = 0.002). Consumption of preserved meats or a history of tobacco smoking were not associated with NPC (P>0.05). We also assessed the contribution of EBV/IgA/VCA antibody serostatus to NPC risk—32.2% of NPC can be explained by IgA+ status. However, family history and environmental risk factors cumulatively explained only 2.7% of NPC development in NPC high risk population. These findings should have important public health implications for NPC risk reduction in endemic regions.
PMCID: PMC4406046  PMID: 19296536
Nasopharyngeal Carcinoma; Risk factor; Epidemiology; Southern China; Epstein Barr Virus
3.  Comparative genomics reveals insights into avian genome evolution and adaptation 
Zhang, Guojie | Li, Cai | Li, Qiye | Li, Bo | Larkin, Denis M. | Lee, Chul | Storz, Jay F. | Antunes, Agostinho | Greenwold, Matthew J. | Meredith, Robert W. | Ödeen, Anders | Cui, Jie | Zhou, Qi | Xu, Luohao | Pan, Hailin | Wang, Zongji | Jin, Lijun | Zhang, Pei | Hu, Haofu | Yang, Wei | Hu, Jiang | Xiao, Jin | Yang, Zhikai | Liu, Yang | Xie, Qiaolin | Yu, Hao | Lian, Jinmin | Wen, Ping | Zhang, Fang | Li, Hui | Zeng, Yongli | Xiong, Zijun | Liu, Shiping | Zhou, Long | Huang, Zhiyong | An, Na | Wang, Jie | Zheng, Qiumei | Xiong, Yingqi | Wang, Guangbiao | Wang, Bo | Wang, Jingjing | Fan, Yu | da Fonseca, Rute R. | Alfaro-Núñez, Alonzo | Schubert, Mikkel | Orlando, Ludovic | Mourier, Tobias | Howard, Jason T. | Ganapathy, Ganeshkumar | Pfenning, Andreas | Whitney, Osceola | Rivas, Miriam V. | Hara, Erina | Smith, Julia | Farré, Marta | Narayan, Jitendra | Slavov, Gancho | Romanov, Michael N | Borges, Rui | Machado, João Paulo | Khan, Imran | Springer, Mark S. | Gatesy, John | Hoffmann, Federico G. | Opazo, Juan C. | Håstad, Olle | Sawyer, Roger H. | Kim, Heebal | Kim, Kyu-Won | Kim, Hyeon Jeong | Cho, Seoae | Li, Ning | Huang, Yinhua | Bruford, Michael W. | Zhan, Xiangjiang | Dixon, Andrew | Bertelsen, Mads F. | Derryberry, Elizabeth | Warren, Wesley | Wilson, Richard K | Li, Shengbin | Ray, David A. | Green, Richard E. | OBrien, Stephen J. | Griffin, Darren | Johnson, Warren E. | Haussler, David | Ryder, Oliver A. | Willerslev, Eske | Graves, Gary R. | Alström, Per | Fjeldså, Jon | Mindell, David P. | Edwards, Scott V. | Braun, Edward L. | Rahbek, Carsten | Burt, David W. | Houde, Peter | Zhang, Yong | Yang, Huanming | Wang, Jian | Jarvis, Erich D. | Gilbert, M. Thomas P. | Wang, Jun
Science (New York, N.Y.)  2014;346(6215):1311-1320.
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
PMCID: PMC4390078  PMID: 25504712
4.  Recurrent Evolution of Melanism in South American Felids 
PLoS Genetics  2015;11(2):e1004892.
Morphological variation in natural populations is a genomic test bed for studying the interface between molecular evolution and population genetics, but some of the most interesting questions involve non-model organisms that lack well annotated reference genomes. Many felid species exhibit polymorphism for melanism but the relative roles played by genetic drift, natural selection, and interspecies hybridization remain uncertain. We identify mutations of Agouti signaling protein (ASIP) or the Melanocortin 1 receptor (MC1R) as independent causes of melanism in three closely related South American species: the pampas cat (Leopardus colocolo), the kodkod (Leopardus guigna), and Geoffroy’s cat (Leopardus geoffroyi). To assess population level variation in the regions surrounding the causative mutations we apply genomic resources from the domestic cat to carry out clone-based capture and targeted resequencing of 299 kb and 251 kb segments that contain ASIP and MC1R, respectively, from 54 individuals (13–21 per species), achieving enrichment of ~500–2500-fold and ~150x coverage. Our analysis points to unique evolutionary histories for each of the three species, with a strong selective sweep in the pampas cat, a distinctive but short melanism-specific haplotype in the Geoffroy’s cat, and reduced nucleotide diversity for both ancestral and melanism-bearing chromosomes in the kodkod. These results reveal an important role for natural selection in a trait of longstanding interest to ecologists, geneticists, and the lay community, and provide a platform for comparative studies of morphological variation in other natural populations.
Author Summary
Color polymorphism in closely related animal species provides an opportunity to study how the balance between natural selection and genetic drift shapes the evolution of appearance and form. The cat family, Felidae, is especially interesting; 13 of 37 extant species exhibit polymorphism for melanism, but evidence for any adaptive role is lacking, in part because the potential benefits of melanism to felid predators are not clear, and in part because the tools for genomic analysis of natural populations are limited. We identify the mutations responsible for melanism in three closely related South American wild felids, the pampas cat, the kodkod, and Geoffroy’s cat, then adapt a new approach for targeted genome sequencing to characterize molecular variation in the region surrounding each melanism mutation. We find that each mutation has developed independently, with strong evidence for natural selection in the black pampas cat, and reduced genetic variation in the entire population of kodkods. Our results demonstrate that some “black cats” are black not by chance, but by selection for a mutation that provides increased fitness.
PMCID: PMC4335015  PMID: 25695801
5.  SmileFinder: a resampling-based approach to evaluate signatures of selection from genome-wide sets of matching allele frequency data in two or more diploid populations 
GigaScience  2015;4:1.
Adaptive alleles may rise in frequency as a consequence of positive selection, creating a pattern of decreased variation in the neighboring loci, known as a selective sweep. When the region containing this pattern is compared to another population with no history of selection, a rise in variance of allele frequencies between populations is observed. One challenge presented by large genome-wide datasets is the ability to differentiate between patterns that are remnants of natural selection from those expected to arise at random and/or as a consequence of selectively neutral demographic forces acting in the population.
SmileFinder is a simple program that looks for diversity and divergence patterns consistent with selection sweeps by evaluating allele frequencies in windows, including neighboring loci from two or more populations of a diploid species against the genome-wide neutral expectation. The program calculates the mean of heterozygosity and FST in a set of sliding windows of incrementally increasing sizes, and then builds a resampled distribution (the baseline) of random multi-locus sets matched to the sizes of sliding windows, using an unrestricted sampling. Percentiles of the values in the sliding windows are derived from the superimposed resampled distribution. The resampling can easily be scaled from 1 K to 100 M; the higher the number, the more precise the percentiles ascribed to the extreme observed values.
The output from SmileFinder can be used to plot percentile values to look for population diversity and divergence patterns that may suggest past actions of positive selection along chromosome maps, and to compare lists of suspected candidate genes under random gene sets to test for the overrepresentation of these patterns among gene categories. Both applications of the algorithm have already been used in published studies. Here we present a publicly available, open source program that will serve as a useful tool for preliminary scans of selection using worldwide databases of human genetic variation, as well as population datasets for many non-human species, from which such data is rapidly emerging with the advent of new genotyping and sequencing technologies.
PMCID: PMC4382839  PMID: 25838885
Genome; Selection; Resampling; Evolution; Population; Galaxy
6.  Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates 
PLoS ONE  2014;9(12):e74132.
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.
PMCID: PMC4280113  PMID: 25549322
7.  GWATCH: a web platform for automated gene association discovery analysis 
GigaScience  2014;3:18.
As genome-wide sequence analyses for complex human disease determinants are expanding, it is increasingly necessary to develop strategies to promote discovery and validation of potential disease-gene associations.
Here we present a dynamic web-based platform – GWATCH – that automates and facilitates four steps in genetic epidemiological discovery: 1) Rapid gene association search and discovery analysis of large genome-wide datasets; 2) Expanded visual display of gene associations for genome-wide variants (SNPs, indels, CNVs), including Manhattan plots, 2D and 3D snapshots of any gene region, and a dynamic genome browser illustrating gene association chromosomal regions; 3) Real-time validation/replication of candidate or putative genes suggested from other sources, limiting Bonferroni genome-wide association study (GWAS) penalties; 4) Open data release and sharing by eliminating privacy constraints (The National Human Genome Research Institute (NHGRI) Institutional Review Board (IRB), informed consent, The Health Insurance Portability and Accountability Act (HIPAA) of 1996 etc.) on unabridged results, which allows for open access comparative and meta-analysis.
GWATCH is suitable for both GWAS and whole genome sequence association datasets. We illustrate the utility of GWATCH with three large genome-wide association studies for HIV-AIDS resistance genes screened in large multicenter cohorts; however, association datasets from any study can be uploaded and analyzed by GWATCH.
PMCID: PMC4220276  PMID: 25374661
AIDS; HIV; Complex diseases; Genome-wide association studies (GWAS); Whole genome sequencing (WGS)
8.  Strong Influence of HLA-DP Gene Variants on Development of Persistent Chronic HBV Carriers in the Han Chinese Population 
Hepatology (Baltimore, Md.)  2011;53(2):422-428.
Chronic hepatitis B virus (HBV) infection is a major health issue, especially in Asia. A recent genome-wide association study (GWAS) has implicated genetic variants in the HLA-DP locus associated with chronic hepatitis B in Japanese and Thai populations. To confirm whether the polymorphisms at the HLA-DP genes are associated with persistent chronic hepatitis B virus infection in Han Chinese, we conducted an independent case-control study using 521 persistent chronic HBV carriers and 819 controls that included 571 persons with HBV natural clearance and 248 never HBV-infected (healthy) individuals. Eleven single nucleotide polymorphisms (SNPs) in a region including HLA-DPA and HLA-DPB and an adjacent SNP in strong linkage disequilibrium (LD) with a neighboring HLA-DR13 locus were genotyped using TaqMan SNP genotyping assay. Eleven variants at HLA-DP showed a strong association with persistent chronic HBV carrier status (p = 1.82×10−12 to 0.01). We also stratified the analysis by HBV clearance status to test the association between these polymorphisms and HBV natural clearance; similar results were obtained (p = 2.70×10−11 to 0.003). Included SNPs define highly structured haplotypes which were also strongly associated with HBV chronic infection (Block 1: odds ratio (OR) = 0.54, p = 8.73×10−7; block 2: OR = 1.98, p = 1.37×10−10). These results further confirm that genetic variants in the HLA-DP locus are strongly associated with persistent HBV infection in the Han Chinese population.
PMCID: PMC3056070  PMID: 21274863
Chronic hepatitis B; Haplotype association; GWAS; SNPs; Joint effects
9.  Genetic Associations of Variants in Genes Encoding HIV-Dependency Factors Required for HIV-1 Infection 
The Journal of Infectious Diseases  2010;202(12):1836-1845.
Background. High-throughput genome-wide techniques have facilitated the identification of previously unknown host proteins involved in cellular human immunodeficiency virus (HIV) infection. Recently, 3 independent studies have used small interfering RNA technology to silence each gene in the human genome to determine the importance of each in HIV infection. Genes conferring a significant effect were termed HIV-dependency factors (HDFs).
Methods. We assembled high-density panels of 6380 single-nucleotide polymorphisms (SNPs) in 278 HDF genes and tested for genotype associations with HIV infection and AIDS progression in 1633 individuals from clinical AIDS cohorts.
Results. After statistical correction for multiple tests, significant associations with HIV acquisition were found for SNPs in 2 genes, NCOR2 and IDH1. Weaker associations with AIDS progression were revealed for SNPs within the TM9SF2 and EGFR genes.
Conclusions. This study independently verifies the influence of NCOR2 and IDH1 on HIV transmission, and its findings suggest that variation in these genes affects susceptibility to HIV infection in exposed individuals.
PMCID: PMC3107555  PMID: 21083371
10.  Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments 
BMC Genomics  2014;15(1):779.
Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair, which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair shaft proteins, are largely responsible for hair variation.
We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of 30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization. Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution, high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT) KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the “hairless” dolphin had 35 KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene expression variation probably also influences hair diversification patterns, for example human have an identical KRTAP repertoire as apes, but much less hair.
We hypothesize that differences in KRTAP gene repertoire and gene expression, together with distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological pressures.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-779) contains supplementary material, which is available to authorized users.
PMCID: PMC4180150  PMID: 25208914
Concerted evolution; Gene family; Keratin Associated Proteins; Keratin; Hair; Gene conversion; Recombination; Positive selection
11.  Effect of host genetics on CMV retinitis occurrence in patients with AIDS 
The Journal of infectious diseases  2010;202(4):606-613.
Cytomegalovirus (CMV) retinitis is a common opportunistic infection among patients with AIDS and still causes visual morbidity despite the wide spread usage of highly active antiretroviral therapy (HAART). The ubiquitous CMV pathogen contains a human interleukin-10 (IL-10) homolog in its genome and utilizes it to evade host immune reactions through an IL-10 receptor mediated immune-suppression pathway.
Effects of IL-10R1, IL-10 and previously described AIDS restriction gene variants are investigated on the development of CMV retinitis in the Longitudinal Study of the Ocular Complications of AIDS (LSOCA) cohort (n=1284).
In Europen Americans (n=750), a haplotype carrying an amino acid changing variation in the cytoplasmic domain (S420L) of IL-10R1 can be protective (OR = 0.14, CI: 0.02–0.94, P = 0.04) against, whereas another haplotype carrying an amino acid changing variation in the extracellular domain (I224V) of IL-10R1 can be more susceptible (OR = 6.21, CI: 1.22–31.54, P = 0.03) to CMV retinitis. In African Americans (n=534), potential effects of IL-10 variants are observed.
Host genetics may have a role in the occurrence of CMV retinitis in patients infected with HIV.
PMCID: PMC2932829  PMID: 20617924
AIDS; CMV retinitis; HIV-1; host genetics; interleukin-10 receptor
12.  Effect of host genetics on incidence of HIV neuroretinal disorder in patients with AIDS 
Approximately 10 to 15% of patients with AIDS but without ocular opportunistic infections will have a presumed neuroretinal disorder (HIV-NRD), manifested by reduced contrast sensitivity and abnormal visual fields. The loss of contrast sensitivity often is sufficient to impair reading speed. To evaluate the effect of host genetics on HIV-NRD, we explored validated AIDS restriction gene variants CCR5Δ32, CCR2-64I, CCR5 P1, SDF-3`A, IL-10-5`A, RANTES -403A, RANTES -28G, RANTES-In1.1C, CX3CR1-249I, CX3CR1-280M, IFNG-179T, MDR1-3435T, and MCP-1364G, each of which has been implicated previously to influence HIV-1 infection, AIDS progression, therapy response, and antiviral drug metabolism, and an IL-10 receptor gene, IL-10R1, in the Longitudinal Study of the Ocular Complications of AIDS (LSOCA) cohort. In European Americans (cases=55, controls=290), IL-10-5`A variant and its promoter haplotype (HR=2.09, CI: 1.19–3.67, P = 0.01); in African Americans (cases=54, controls=180) RANTES-In1.1C and the associated haplotype (HR=2.72, CI: 1.48–5.00, P = 0.001), showed increased HIV-NRD susceptibility. While sample sizes are small and P values do not pass a strict Bonferroni correction, our results suggest that, in European Americans, an IL-10-related pathway, and, in African Americans, chemokine receptor ligand polymorphisms in RANTES are risk factors for HIV- NRD development. Clearly, further studies are warrented.
PMCID: PMC2908809  PMID: 20531015
AIDS; HIV-1; host genetics; HIV-neuroretinal disorder
13.  Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1 
Nature genetics  2007;39(6):733-740.
Allotypes of the natural killer (NK) cell receptor KIR3DL1 vary in both NK cell expression patterns and inhibitory capacity upon binding to their ligands, HLA-B Bw4 molecules, present on target cells. Using a sample size of over 1,500 human immunodeficiency virus (HIV)+ individuals, we show that various distinct allelic combinations of the KIR3DL1 and HLA-B loci significantly and strongly influence both AIDS progression and plasma HIV RNA abundance in a consistent manner. These genetic data correlate very well with previously defined functional differences that distinguish KIR3DL1 allotypes. The various epistatic effects observed here for common, distinct KIR3DL1 and HLA-B Bw4 combinations are unprecedented with regard to any pair of genetic loci in human disease, and indicate that NK cells may have a critical role in the natural history of HIV infection.
PMCID: PMC4135476  PMID: 17496894
14.  Evaluation and Integration of Genetic Signature for Prediction Risk of Nasopharyngeal Carcinoma in Southern China 
BioMed Research International  2014;2014:434072.
Genetic factors, as well as environmental factors, play a role in development of nasopharyngeal carcinoma (NPC). A number of single nucleotide polymorphisms (SNPs) have been reported to be associated with NPC. To confirm these genetic associations with NPC, two independent case-control studies from Southern China comprising 1166 NPC cases and 2340 controls were conducted. Seven SNPs in ITGA9 at 3p21.3 and 9 SNPs within the 6p21.3 HLA region were genotyped. To explore the potential clinical application of these genetic markers in NPC, we further evaluate the predictive/diagnostic role of significant SNPs by calculating the area under the curve (AUC). Results. The reported associations between ITGA9 variants and NPC were not replicated. Multiple loci of GABBR1, HLA-F, HLA-A, and HCG9 were statistically significant in both cohorts (Pcombined range from 5.96 × 10−17 to 0.02). We show for the first time that these factors influence NPC development independent of environmental risk factors. This study also indicated that the SNP alone cannot serve as a predictive/diagnostic marker for NPC. Integrating the most significant SNP with IgA antibodies status to EBV, which is presently used as screening/diagnostic marker for NPC in Chinese populations, did not improve the AUC estimate for diagnosis of NPC.
PMCID: PMC4142549  PMID: 25180181
15.  Annotated features of domestic cat – Felis catus genome 
GigaScience  2014;3:13.
Domestic cats enjoy an extensive veterinary medical surveillance which has described nearly 250 genetic diseases analogous to human disorders. Feline infectious agents offer powerful natural models of deadly human diseases, which include feline immunodeficiency virus, feline sarcoma virus and feline leukemia virus. A rich veterinary literature of feline disease pathogenesis and the demonstration of a highly conserved ancestral mammal genome organization make the cat genome annotation a highly informative resource that facilitates multifaceted research endeavors.
Here we report a preliminary annotation of the whole genome sequence of Cinnamon, a domestic cat living in Columbia (MO, USA), bisulfite sequencing of Boris, a male cat from St. Petersburg (Russia), and light 30× sequencing of Sylvester, a European wildcat progenitor of cat domestication. The annotation includes 21,865 protein-coding genes identified by a comparative approach, 217 loci of endogenous retrovirus-like elements, repetitive elements which comprise about 55.7% of the whole genome, 99,494 new SNVs, 8,355 new indels, 743,326 evolutionary constrained elements, and 3,182 microRNA homologues. The methylation sites study shows that 10.5% of cat genome cytosines are methylated. An assisted assembly of a European wildcat, Felis silvestris silvestris, was performed; variants between F. silvestris and F. catus genomes were derived and compared to F. catus.
The presented genome annotation extends beyond earlier ones by closing gaps of sequence that were unavoidable with previous low-coverage shotgun genome sequencing. The assembly and its annotation offer an important resource for connecting the rich veterinary and natural history of cats to genome discovery.
PMCID: PMC4138527  PMID: 25143822
Felis catus; Domestic cat; Felis silvestris silvestris; European wildcat; Genome sequence; Annotation; Assembly
16.  Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White spotting in Domestic Cats 
G3: Genes|Genomes|Genetics  2014;4(10):1881-1891.
The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr. B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2) revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as responsible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp) FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1 element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genetically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10. The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element with Dominant White/blue iris (P < 0.0001) and white spotting (P < 0.0001), respectively.
PMCID: PMC4199695  PMID: 25085922
White; domestic cat; deaf; white spotting; retrotransposition; FERV1
17.  Mitochondrial Haplogroups Are Associated With Risk of Neuroretinal Disorder in HIV-Positive Patients 
Although highly active antiretroviral therapy has improved survivorship dramatically and decreased the incidence of cytomegalovirus retinitis among patients with AIDS, other ophthalmic complications continue to occur. One complication observed in ~12% of HIV-infected patients is a presumed neuroretinal disorder (NRD), manifested as decreased contrast sensitivity and associated with vague subjective complaints of hazy vision. Pathologically, patients with AIDS even without ocular opportunistic infections have loss of optic nerve axons, suggestive of mitochondrial dysfunction. We explored whether variation in mitochondrial DNA was associated with time to NRD in HIV-infected patients in the Longitudinal Study of Ocular Complications of AIDS cohort. Within the Western European, or “N”, mitochondrial DNA macrohaplogroup, haplogroup J, was associated with 80% decrease in the risk of progression to NRD during the study (hazard ratio = 0.20, P = 0.039) and suggested an independent association with protection against NRD in a cross-section of all patients taken at enrollment (1.5% vs. 8.9% in patients with vs. without haplogroup J, respectively, P = 0.05). These data suggest that mitochondrial genotype may influence propensity to develop HIV-associated NRD in patients with AIDS.
PMCID: PMC4096800  PMID: 20098332
AIDS; mitochondrial DNA; neuroretinal disorder
18.  The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms 
Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed.
We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays.
We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement.
PMCID: PMC4084570  PMID: 24947429
Incomplete lineage sorting; SINEs; Carnivora; Speciation; transposable elements; Adaptation; Feliformia; Felidae
19.  Genetic Variations Affecting Serum Carcinoembryonic Antigen Levels and Status of Regional Lymph Nodes in Patients with Sporadic Colorectal Cancer from Southern China 
PLoS ONE  2014;9(6):e97923.
Serum carcinoembryonic antigen (sCEA) level might be an indicator of disease. Indeed, an elevated sCEA level is a prognostic factor in colorectal cancer (CRC) patients. However, the genetic determinants of sCEA level in healthy and CRC population remains unclear. Thus we investigated the genetic markers associated with elevated serum sCEA level in these two populations and its clinical implications.
Methods and Findings
Genome-wide association study (GWAS) was conducted in a cohort study with 4,346 healthy male adults using the Illumina Omni 1 M chip. Candidate SNPs associated with elevated sCEA levels were validated in 194 CRC patients on ABI Taqman platform. Eight candidate SNPs were validated in CRC patients. The rs1047781 (chr19- FUT2) (A/T) was associated with elevated sCEA levels, and rs8176746 (chr9- ABO) was associated with the regional lymph metastasis in the CRC patients. The preoperative sCEA level was a risk factor for tumor recurrence in 5 years after operation (OR = 1.427, 95% CI: 1.005∼1.843, P = 0.006). It was also one of the risk factors for regional lymph node metastasis (OR = 2.266, 95% CI: 1.196∼4.293, P = 0.012). The sCEA level in rs1047781-T carriers was higher than that in the A carriers in CRC patients without lymph node metastasis (P = 0.006). The regional lymph node metastasis in patients with homozygote AA of rs8176746 was more common than that in the heterozygote AG carriers (P = 0.022). In addition, rs1047781-AT and TT CRC patients exhibited a worse disease-free survival than AA genotype carriers (P = 0.023).
We found candidate SNPs associated with elevated sCEA levels in both healthy males and CRC population. Rs1047781 (chr19- FUT2) may be the susceptible locus for recurrence of CRC in a population from Southern China.
PMCID: PMC4062418  PMID: 24941225
20.  Genome-wide Mycobacterium tuberculosis variation (GMTV) database: a new tool for integrating sequence variations and epidemiology 
BMC Genomics  2014;15:308.
Tuberculosis (TB) poses a worldwide threat due to advancing multidrug-resistant strains and deadly co-infections with Human immunodeficiency virus. Today large amounts of Mycobacterium tuberculosis whole genome sequencing data are being assessed broadly and yet there exists no comprehensive online resource that connects M. tuberculosis genome variants with geographic origin, with drug resistance or with clinical outcome.
Here we describe a broadly inclusive unifying Genome-wide Mycobacterium tuberculosis Variation (GMTV) database, ( that catalogues genome variations of M. tuberculosis strains collected across Russia. GMTV contains a broad spectrum of data derived from different sources and related to M. tuberculosis molecular biology, epidemiology, TB clinical outcome, year and place of isolation, drug resistance profiles and displays the variants across the genome using a dedicated genome browser. GMTV database, which includes 1084 genomes and over 69,000 SNP or Indel variants, can be queried about M. tuberculosis genome variation and putative associations with drug resistance, geographical origin, and clinical stages and outcomes.
Implementation of GMTV tracks the pattern of changes of M. tuberculosis strains in different geographical areas, facilitates disease gene discoveries associated with drug resistance or different clinical sequelae, and automates comparative genomic analyses among M. tuberculosis strains.
PMCID: PMC4234438  PMID: 24767249
Mycobacterium tuberculosis; Genome variations; Mutation; Genetic diversity; Whole genome sequencing; Database
21.  Mitochondrial DNA Haplogroups influence AIDS Progression 
AIDS (London, England)  2008;22(18):2429-2439.
Mitochondrial function plays a role in both AIDS progression and highly active antiretroviral therapy (HAART) toxicity, therefore we sought to determine whether mitochondrial (mt) DNA variation revealed novel AIDS Restriction Genes (ARGs), particularly as mtDNA single nucleotide polymorphisms (SNPs) are known to influence regulation of oxidative phosphorylation, reactive oxygen species (ROS) production, and apoptosis.
Retrospective cohort study.
We performed an association study of mtDNA haplogroups among 1833 European American HIV-1 patients from five US cohorts, the Multicenter AIDS Cohort Study (MACS), the San Francisco City Clinic Study (SFCC), Hemophilia Growth and Development Study (HGDS), the Multicenter Hemophilia Cohort Study (MHCS), and the AIDS Linked to Intravenous Experiences (ALIVE) cohort to determine whether the mtDNA haplogroup correlated with AIDS progression rate.
MtDNA haplogroups J and U5a were elevated among HIV-1 infected people who display accelerated progression to AIDS and death. Haplogroups Uk, H3, and IWX appeared to be highly protective against AIDS progression.
The associations found in our study appear to support a functional explanation by which mtDNA variation among haplogroups influencing ATP production, ROS generation, and apoptosis is correlated to AIDS disease progression, however repeating these results in cohorts with different ethnic backgrounds would be informative. These data suggest that mitochondrial genes are important indicators of AIDS disease progression in HIV-1 infected persons.
PMCID: PMC2699618  PMID: 19005266
Mitochondria; AIDS; HIV-1; apoptosis; disease
22.  Host genomic influences on HIV/AIDS 
Genome Biology  2013;14(1):201.
The AIDS era has seen multiple advances in the power of genetics research; scores of host genetic protective factors have been nominated and several have translated to the bedside. We discuss how genomics may inform HIV/AIDS prevention, treatment and eradication.
PMCID: PMC3663097  PMID: 23369251
23.  Genome-Wide and Differential Proteomic Analysis of Hepatitis B Virus and Aflatoxin B1 Related Hepatocellular Carcinoma in Guangxi, China 
PLoS ONE  2013;8(12):e83465.
Both hepatitis B virus (HBV) and aflatoxin B1 (AFB1) exposure can cause liver damage as well as increase the probability of hepatocellular carcinoma (HCC). To investigate the underlying genetic changes that may influence development of HCC associated with HBV infection and AFB1 exposure, HCC patients were subdivided into 4 groups depending upon HBV and AFB1 exposure status: (HBV(+)/AFB1(+), HBV(+)/AFB1(-), HBV(-)/AFB1(+), HBV(-)/AFB1(-)). Genetic abnormalities and protein expression profiles were analyzed by array-based comparative genomic hybridization and isobaric tagging for quantitation. A total of 573 chromosomal aberrations (CNAs) including 184 increased and 389 decreased were detected in our study population. Twenty-five recurrently altered regions (RARs; chromosomal alterations observed in ≥10 patients) in chromosomes were identified. Loss of 4q13.3-q35.2, 13q12.1-q21.2 and gain of 7q11.2-q35 were observed with a higher frequency in the HBV(+)/AFB1(+), HBV(+)/AFB1(-) and HBV(-)/AFB1(+) groups compared to the HBV(-)/AFB(-) group. Loss of 8p12-p23.2 was associated with high TNM stage tumors (P = 0.038) and was an unfavorable prognostic factor for tumor-free survival (P =0.045). A total of 133 differentially expressed proteins were identified in iTRAQ proteomics analysis, 69 (51.8%) of which mapped within identified RARs. The most common biological processes affected by HBV and AFB1 status in HCC tumorigenesis were detoxification and drug metabolism pathways, antigen processing and anti-apoptosis pathways. Expression of AKR1B10 was increased significantly in the HBV(+)/AFB1(+) and HBV(-)/AFB1(+) groups. A significant correlation between the expression of AKR1B10 mRNA and protein levels as well as AKR1B10 copy number was observered, which suggest that AKR1B10 may play a role in AFB1-related hepatocarcinogenesis. In summary, a number of genetic and gene expression alterations were found to be associated with HBV and AFB1- related HCC. The possible synergistic effects of HBV and AFB1 in hepatocarcinogenesis warrant further investigations.
PMCID: PMC3877066  PMID: 24391771
24.  Genetic Characterization of Feline Leukemia Virus from Florida Panthers 
Emerging Infectious Diseases  2008;14(2):252-259.
The emergent strain of FeLV, a novel subgroup A, was probably transmitted to panthers by a domestic cat.
From 2002 through 2005, an outbreak of feline leukemia virus (FeLV) occurred in Florida panthers (Puma concolor coryi). Clinical signs included lymphadenopathy, anemia, septicemia, and weight loss; 5 panthers died. Not associated with FeLV outcome were the genetic heritage of the panthers (pure Florida vs. Texas/Florida crosses) and co-infection with feline immunodeficiency virus. Genetic analysis of panther FeLV, designated FeLV-Pco, determined that the outbreak likely came from 1 cross-species transmission from a domestic cat. The FeLV-Pco virus was closely related to the domestic cat exogenous FeLV-A subgroup in lacking recombinant segments derived from endogenous FeLV. FeLV-Pco sequences were most similar to the well-characterized FeLV-945 strain, which is highly virulent and strongly pathogenic in domestic cats because of unique long terminal repeat and envelope sequences. These unique features may also account for the severity of the outbreak after cross-species transmission to the panther.
PMCID: PMC2600209  PMID: 18258118
Communicable diseases; emerging; leukemia virus; feline; molecular biology; immunodeficiency virus; research
25.  Needle Assisted Arthroscopic Clysis of the Medial Collateral Ligament of the Knee: a Simple Technique to Improve Exposure in Arthroscopic Knee Surgery 
Orthopedic Reviews  2013;5(4):e38.
During knee arthroscopy, narrowness and tightness maybe encountered in the medial compartment that does not allow sufficient visualization or instrumentation. When this occurs, our team has found it helpful to perform a percutaneous clysis of the deep portion of the medial collateral ligament with a spinal needle. With the knee positioned in 10° to 20° of flexion and a valgus stress is applied. A spinal needle (18 Gauge) is passed percutaneously through the medial collateral ligament between the tibial plateau and undersurface of the medial meniscus. Several passes are made with the spinal needle with the bevel of the needle angled to selectively divide the fibers while keeping the medial collateral ligament under tension. Then with controlled valgus force, the medial compartment will progressively open allowing improved visualization to the posteromedial corner of the knee. This increase in space gives an enhanced visual field and further allows more room for arthroscopic instrumentation.
PMCID: PMC3883079  PMID: 24416482
medial collateral ligament; knee arthroscopy; menisectomy; ligament release

Results 1-25 (118)