PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  miR-451 regulates dendritic cell cytokine responses to influenza infection1 
MicroRNAs are important post-transcriptional regulators in immune cells, but how viral infection regulates microRNA expression to shape dendritic cell responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine dendritic cells in response to the double-stranded RNA agonist poly(I:C), a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung dendritic cells by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of pro-inflammatory cytokine responses. Three types of primary dendritic cells treated with anti-sense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in dendritic cells. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-UTRs to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I interferon, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune dendritic cell cytokine production.
doi:10.4049/jimmunol.1201437
PMCID: PMC3528339  PMID: 23169590
2.  Differential Host Response, Rather Than Early Viral Replication Efficiency, Correlates with Pathogenicity Caused by Influenza Viruses 
PLoS ONE  2013;8(9):e74863.
Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB –mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains.
doi:10.1371/journal.pone.0074863
PMCID: PMC3779241  PMID: 24073225
3.  Nramp1 Expression by Dendritic Cells Modulates Inflammatory Responses During Salmonella Typhimurium Infection 
Cellular microbiology  2008;10(8):1646-1661.
Host resistance against Salmonella enterica serovar Typhimurium (S. Typhimurium) is mediated by Natural resistance-associated macrophage protein 1 (Nramp1/Slc11a1). Nramp1 is critical to host defense, since mice lacking Nramp1 fail to control bacterial replication and succumb to low doses of S. Typhimurium. Despite this crucial role, the mechanisms underlying Nramp1’s protective effects are unclear. Dendritic cells (DCs) that sample the intestinal lumen are among the first cells encountered by S. Typhimurium following oral infection and act as a conduit for S. Typhimurium to cross the intestinal epithelial barrier. We report that DCs, including intestinal, splenic and bone marrow derived DCs (BMDCs), express Nramp1 protein. In the small intestine, Nramp1 expression is greater in a subset of DCs (CD11c+ CD103−) characterized by the elevated expression of pro-inflammatory cytokines in response to bacterial products. While Nramp1 expression did not affect S. Typhimurium replication in BMDCs, infected Nramp1+/+ BMDCs and intestinal CD11c+ CD103− DCs secreted more inflammatory cytokines (IL-6, IL-12 and TNF-α) than Nramp1−/−, suggesting Nramp1 expression may promote a more rapid inflammatory response following infection. Collectively, these findings reveal a new role for DCs and Nramp1 in modulating the host inflammatory response to S. Typhimurium.
doi:10.1111/j.1462-5822.2008.01155.x
PMCID: PMC3051341  PMID: 18397382
Dendritic cells; Macrophages; Nramp1; Salmonella; Cytokine
4.  IRAK-4 mutation (Q293X): rapid detection, and characterisation of defective post-transcriptional TLR/IL-1R responses in human myeloid and non-myeloid cells1 
Innate immunodeficiency has recently been reported resulting from the Q293X IRAK-4 mutation, with consequent defective TLR/IL-1R signalling. Here we report a method for the rapid allele-specific detection of this mutation and demonstrate both cell-type specificity and ligand specificity in defective IRAK-4-deficient cellular responses, indicating differential roles for this protein in human peripheral blood mononuclear cells and primary dermal fibroblasts, and in LPS, IL-1β and TNF-α signalling. We demonstrate transcriptional and post-transcriptional defects, despite NF-κB signalling and intact MyD88-independent signalling, and propose that dysfunctional Complex 1 (IRAK1/TRAF6/TAK1) signalling, as a consequence of IRAK-4-deficiency, generates specific defects in mitogen-activated protein kinase activation that could underpin this patient’s innate immunodeficiency. These studies demonstrate the importance of studying primary human cells bearing a clinically relevant mutation; they underscore the complexity of innate immune signalling and illuminate novel roles for IRAK-4 and the fundamental importance of accessory pro-inflammatory signalling to normal human innate immune responses and immunodeficiencies.
PMCID: PMC2948538  PMID: 17114497
Human; Immunodeficiency diseases; Inflammation
5.  Flagellin-Dependent and -Independent Inflammatory Responses following Infection by Enteropathogenic Escherichia coli and Citrobacter rodentium▿  
Infection and Immunity  2008;76(4):1410-1422.
Enteropathogenic Escherichia coli (EPEC) and the murine pathogen Citrobacter rodentium belong to the attaching and effacing (A/E) family of bacterial pathogens. These noninvasive bacteria infect intestinal enterocytes using a type 3 secretion system (T3SS), leading to diarrheal disease and intestinal inflammation. While flagellin, the secreted product of the EPEC fliC gene, causes the release of interleukin 8 (IL-8) from epithelial cells, it is unclear whether A/E bacteria also trigger epithelial inflammatory responses that are FliC independent. The aims of this study were to characterize the FliC dependence or independence of epithelial inflammatory responses to direct infection by EPEC or C. rodentium. Following infection of Caco-2 intestinal epithelial cells by wild-type and ΔfliC EPEC, a rapid activation of several proinflammatory genes, including those encoding IL-8, monocyte chemoattractant protein 1, macrophage inflammatory protein 3α (MIP3α), and β-defensin 2, occurred in a FliC-dependent manner. These responses were accompanied by mitogen-activated protein kinase activation, as well as the Toll-like receptor 5 (TLR5)-dependent activation of NF-κB. At later infection time points, a subset of these proinflammatory genes (IL-8 and MIP3α) was also induced in cells infected with ΔfliC EPEC. The nonmotile A/E pathogen C. rodentium also triggered similar innate responses through a TLR5-independent but partially NF-κB-dependent mechanism. Moreover, the EPEC FliC-independent responses were increased in the absence of the locus of enterocyte effacement-encoded T3SS, suggesting that translocated bacterial effectors suppress rather than cause the FliC-independent inflammatory response. Thus, we demonstrate that infection of intestinal epithelial cells by A/E pathogens can trigger an array of proinflammatory responses from epithelial cells through both FliC-dependent and -independent pathways, expanding our understanding of the innate epithelial response to infection by these pathogens.
doi:10.1128/IAI.01141-07
PMCID: PMC2292885  PMID: 18227166
8.  Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics 
PLoS Computational Biology  2008;4(3):e1000021.
Macrophages are versatile immune cells that can detect a variety of pathogen-associated molecular patterns through their Toll-like receptors (TLRs). In response to microbial challenge, the TLR-stimulated macrophage undergoes an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network poses significant challenges and requires the integration of multiple experimental data types. In this work, we inferred a transcriptional network underlying TLR-stimulated murine macrophage activation. Microarray-based expression profiling and transcription factor binding site motif scanning were used to infer a network of associations between transcription factor genes and clusters of co-expressed target genes. The time-lagged correlation was used to analyze temporal expression data in order to identify potential causal influences in the network. A novel statistical test was developed to assess the significance of the time-lagged correlation. Several associations in the resulting inferred network were validated using targeted ChIP-on-chip experiments. The network incorporates known regulators and gives insight into the transcriptional control of macrophage activation. Our analysis identified a novel regulator (TGIF1) that may have a role in macrophage activation.
Author Summary
Macrophages play a vital role in host defense against infection by recognizing pathogens through pattern recognition receptors, such as the Toll-like receptors (TLRs), and mounting an immune response. Stimulation of TLRs initiates a complex transcriptional program in which induced transcription factor genes dynamically regulate downstream genes. Microarray-based transcriptional profiling has proved useful for mapping such transcriptional programs in simpler model organisms; however, mammalian systems present difficulties such as post-translational regulation of transcription factors, combinatorial gene regulation, and a paucity of available gene-knockout expression data. Additional evidence sources, such as DNA sequence-based identification of transcription factor binding sites, are needed. In this work, we computationally inferred a transcriptional network for TLR-stimulated murine macrophages. Our approach combined sequence scanning with time-course expression data in a probabilistic framework. Expression data were analyzed using the time-lagged correlation. A novel, unbiased method was developed to assess the significance of the time-lagged correlation. The inferred network of associations between transcription factor genes and co-expressed gene clusters was validated with targeted ChIP-on-chip experiments, and yielded insights into the macrophage activation program, including a potential novel regulator. Our general approach could be used to analyze other complex mammalian systems for which time-course expression data are available.
doi:10.1371/journal.pcbi.1000021
PMCID: PMC2265556  PMID: 18369420
9.  The Innate Immune Database (IIDB) 
BMC Immunology  2008;9:7.
Background
As part of a National Institute of Allergy and Infectious Diseases funded collaborative project, we have performed over 150 microarray experiments measuring the response of C57/BL6 mouse bone marrow macrophages to toll-like receptor stimuli. These microarray expression profiles are available freely from our project web site . Here, we report the development of a database of computationally predicted transcription factor binding sites and related genomic features for a set of over 2000 murine immune genes of interest. Our database, which includes microarray co-expression clusters and a host of web-based query, analysis and visualization facilities, is available freely via the internet. It provides a broad resource to the research community, and a stepping stone towards the delineation of the network of transcriptional regulatory interactions underlying the integrated response of macrophages to pathogens.
Description
We constructed a database indexed on genes and annotations of the immediate surrounding genomic regions. To facilitate both gene-specific and systems biology oriented research, our database provides the means to analyze individual genes or an entire genomic locus. Although our focus to-date has been on mammalian toll-like receptor signaling pathways, our database structure is not limited to this subject, and is intended to be broadly applicable to immunology. By focusing on selected immune-active genes, we were able to perform computationally intensive expression and sequence analyses that would currently be prohibitive if applied to the entire genome. Using six complementary computational algorithms and methodologies, we identified transcription factor binding sites based on the Position Weight Matrices available in TRANSFAC. For one example transcription factor (ATF3) for which experimental data is available, over 50% of our predicted binding sites coincide with genome-wide chromatin immnuopreciptation (ChIP-chip) results. Our database can be interrogated via a web interface. Genomic annotations and binding site predictions can be automatically viewed with a customized version of the Argo genome browser.
Conclusion
We present the Innate Immune Database (IIDB) as a community resource for immunologists interested in gene regulatory systems underlying innate responses to pathogens. The database website can be freely accessed at .
doi:10.1186/1471-2172-9-7
PMCID: PMC2268913  PMID: 18321385
10.  Toll-Like Receptor 4 Contributes to Colitis Development but Not to Host Defense during Citrobacter rodentium Infection in Mice  
Infection and Immunity  2006;74(5):2522-2536.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are noninvasive bacterial pathogens that infect their hosts' intestinal epithelium, causing severe diarrheal disease. These infections also cause intestinal inflammation, although the mechanisms underlying the inflammatory response, as well as its potential role in host defense, are unclear. Since these bacteria are gram-negative, Toll-like receptor 4 (TLR4), the innate receptor for bacterial lipopolysaccharide may contribute to the host response; however, the role of TLR4 in the gastrointestinal tract is poorly understood, and its impact has yet to be tested against this family of enteric bacterial pathogens. Since EPEC and EHEC are human specific, we infected mice with Citrobacter rodentium, a mouse-adapted attaching and effacing (A/E) bacterium that infects colonic epithelial cells, causing colitis and epithelial hyperplasia, using a similar array of virulence proteins as EPEC and EHEC. We demonstrated that C. rodentium activates TLR4 and rapidly induced NF-κB nuclear translocation in host cells in a partially TLR4-dependent manner. Infection of TLR4-deficient mice revealed that TLR4-dependent responses mediate much of the inflammation and tissue pathology seen during infection, including the induction of the chemokines MIP-2 and MCP-1, as well as the recruitment of macrophages and neutrophils into the infected intestine. Surprisingly, spread of C. rodentium through the colon was delayed in TLR4-deficient mice, whereas the duration of the infection was unaffected, indicating that TLR4-mediated responses against this A/E pathogen are not host protective and are ultimately maladaptive to the host, contributing to both the morbidity and the pathology seen during infection.
doi:10.1128/IAI.74.5.2522-2536.2006
PMCID: PMC1459750  PMID: 16622187
11.  Enteropathogenic Escherichia coli Infection Induces Expression of the Early Growth Response Factor by Activating Mitogen-Activated Protein Kinase Cascades in Epithelial Cells 
Infection and Immunity  2001;69(10):6217-6224.
Enteropathogenic Escherichia coli (EPEC) is an extracellular bacterial pathogen that infects the human intestinal epithelium and is a major cause of infantile diarrhea in developing countries. EPEC belongs to the group of attaching and effacing (A/E) pathogens. It uses a type III secretion system to deliver proteins into the host cell that mediate signal transduction events in host cells. We used gene array technology to study epithelial cell responses to EPEC infection at the level of gene expression. We found that EPEC induces the expression of several genes in infected HeLa cells by a lipopolysaccharide (LPS)-independent mechanism, including cytokines and early growth response factor 1 (Egr-1). The transcription factor Egr-1 is an immediate-early-induced gene that is activated in most cell types in response to stress. EPEC-induced upregulation of egr-1 is mediated by the activation of the MEK/extracellular signal-regulated kinase signal transduction pathway and is dependent on the type III secretion system. egr-1 is also induced during infection of mice by the A/E pathogen Citrobacter rodentium, suggesting that both Egr-1 and the activation of this mitogen-activated protein kinase signal transduction pathway may play a role in disease.
doi:10.1128/IAI.69.10.6217-6224.2001
PMCID: PMC98754  PMID: 11553563

Results 1-11 (11)