Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  A platinum-based covalent viability reagent for single cell mass cytometry 
In fluorescence-based flow cytometry, cellular viability is determined with membrane-impermeable fluorescent reagents that specifically enter and label plasma membrane-compromised non-viable cells. A recent technological advance in flow cytometry uses antibodies conjugated to elemental metal isotopes, rather than to fluorophores, to allow signal detection by atomic mass spectrometry. Unhampered by the limitations of overlapping emission fluorescence, mass cytometry increases the number of parameters that can be measured in single cells. However, mass cytometry is unable to take advantage of current fluorescent viability dyes. An alternative methodology was therefore developed here in which the platinum-containing chemotherapy drug cisplatin was used to label cells for mass cytometry determinations of live/dead ratios. In a one-minute incubation step, cisplatin preferentially labeled non-viable cells, from both adherent and suspension cultures, resulting in a platinum signal quantifiable by mass cytometry. This protocol was compatible with established sample processing steps for cytometry. Furthermore, the live/dead ratios were comparable between mass and fluorescence based cytometry. Importantly, although cisplatin is a known DNA-damaging agent, a one-minute “pulse” of cisplatin did not induce observable DNA damage or apoptotic responses even within 6 hours post-exposure. Cisplatin can therefore be used as a viability reagent for a wide range of mass cytometry protocols.
PMCID: PMC3808967  PMID: 22577098
Mass cytometry; cisplatin; viability reagent
2.  Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators 
Nature biotechnology  2012;30(9):858-867.
The ability to comprehensively explore the impact of bio-active molecules on human samples at the single-cell level can provide great insight for biomedical research. Mass cytometry enables quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell communication, the signaling variability between 8 donors, and to define the impact of 27 inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14 PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic investigation of human disease.
PMCID: PMC3627543  PMID: 22902532
3.  Proceedings from the 2009 Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back 
The RASopathies are a group of genetic syndromes caused by germline mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) pathway. Some of these syndromes are neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, LEOPARD syndrome and Legius syndrome. Their common underlying pathogenetic mechanism brings about significant overlap in phenotypic features and includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, GI and ocular abnormalities, and a predisposition to cancer. The proceedings from the symposium “Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back” chronicle the timely and typical research symposium which brought together clinicians, basic scientists, physician-scientists, advocate leaders, trainees, students and individuals with Ras syndromes and their families. The goals, to discuss basic science and clinical issues, to set forth a solid framework for future research, to direct translational applications towards therapy and to set forth best practices for individuals with RASopathies was successfully meet with a commitment to begin to move towards clinical trials.
PMCID: PMC4051786  PMID: 20014119
Cardio-facio-cutaneous syndrome; clinical trial; Costello syndrome; neurofibromatosis type 1; Noonan syndrome; Legius syndrome; Ras/MAPK; signal transduction pathway; RASopathies; therapy
4.  Normalization of mass cytometry data with bead standards 
Mass cytometry uses atomic mass spectrometry combined with isotopically pure reporter elements to currently measure as many as 40 parameters per single cell. As with any quantitative technology, there is a fundamental need for quality assurance and normalization protocols. In the case of mass cytometry, the signal variation over time due to changes in instrument performance combined with intervals between scheduled maintenance must be accounted for and then normalized. Here, samples were mixed with polystyrene beads embedded with metal lanthanides, allowing monitoring of mass cytometry instrument performance over multiple days of data acquisition. The protocol described here includes simultaneous measurements of beads and cells on the mass cytometer, subsequent extraction of the bead-based signature, and the application of an algorithm enabling correction of both short- and long-term signal fluctuations. The variation in the intensity of the beads that remains after normalization may also be used to determine data quality. Application of the algorithm to a one-month longitudinal analysis of a human peripheral blood sample reduced the range of median signal fluctuation from 4.9-fold to 1.3-fold.
PMCID: PMC3688049  PMID: 23512433
5.  Snapin, Positive Regulator of Stimulation- Induced Ca2+ Release through RyR, Is Necessary for HIV-1 Replication in T Cells 
PLoS ONE  2013;8(10):e75297.
To identify critical host factors necessary for human immunodeficiency virus 1 (HIV-1) replication, large libraries of short-peptide-aptamers were expressed retrovirally. The target of one inhibitor peptide, Pep80, identified in this screen was determined to be Snapin, a protein associated with the soluble N-ethyl maleimide sensitive factor adaptor protein receptor (SNARE) complex that is critical for calcium-dependent exocytosis during neurotransmission. Pep80 inhibited Ca2+ release from intracellular stores and blocked downstream signaling by direct interruption of the association between Snapin and an intracellular calcium release channel, the ryanodine receptor (RyR). NFAT signaling was preferentially abolished by Pep80. Expression of Snapin overcame Pep80-mediated inhibition of Ca2+/NFAT signaling and HIV-1 replication. Furthermore, Snapin induced HIV-1 replication in primary CD4+ T cells. Thus, through its interaction with RyR, Snapin is a critical regulator of Ca2+ signaling and T cell activation. Use of the genetically selected intracellular aptamer inhibitors allowed us to define unique mechanisms important to HIV-1 replication and T cell biology.
PMCID: PMC3794929  PMID: 24130701
6.  CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data 
Bioinformatics  2012;28(18):2400-2401.
Motivation: Recent advances in flow cytometry enable simultaneous single-cell measurement of 30+ surface and intracellular proteins. CytoSPADE is a high-performance implementation of an interface for the Spanning-tree Progression Analysis of Density-normalized Events algorithm for tree-based analysis and visualization of this high-dimensional cytometry data.
Availability: Source code and binaries are freely available at and via Bioconductor version 2.10 onwards for Linux, OSX and Windows. CytoSPADE is implemented in R, C++ and Java.
Supplementary Information: Additional documentation available at
PMCID: PMC3436846  PMID: 22782546
7.  Cytometry by Time-of-Flight Shows Combinatorial Cytokine Expression and Virus-Specific Cell Niches within a Continuum of CD8+ T Cell Phenotypes 
Immunity  2012;36(1):142-152.
Cytotoxic CD8+ T lymphocytes directly kill infected or aberrant cells and secrete proinflammatory cytokines. By using metal-labeled probes and mass spectrometric analysis (cytometry by time-of-flight, or CyTOF) of human CD8+ T cells, we analyzed the expression of many more proteins than previously possible with fluorescent labels, including surface markers, cytokines, and antigen specificity with modified peptide-MHC tetramers. With 3-dimensional principal component analysis (3D-PCA) to display phenotypic diversity, we observed a relatively uniform pattern of variation in all subjects tested, highlighting the interrelatedness of previously described subsets and the continuous nature of CD8+ T cell differentiation. These data also showed much greater complexity in the CD8+ T cell compartment than previously appreciated, including a nearly combinatorial pattern of cytokine expression, with distinct niches occupied by virus-specific cells. This large degree of functional diversity even between cells with the same specificity gives CD8+ T cells a remarkable degree of flexibility in responding to pathogens.
PMCID: PMC3752833  PMID: 22265676
8.  A Deep Profiler’s Guide to Cytometry 
Trends in Immunology  2012;33(7):323-332.
In recent years, advances in technology have provided us with tools to quantify the expression of multiple genes in individual cells. The ability to simultaneously measure multiple genes on the same cell is necessary to resolve the incredible diversity of cell subsets, as well as to define their function in the host. Fluorescence-based flow cytometry is the benchmark for this; with it, we can quantify 18 proteins per cell, at >10,000 cells per second. “Mass cytometry” is a new technology that promises to significantly extend these capabilities. Immunophenotyping by mass spectrometry provides the ability to measure more than three dozen proteins at a rate of 1,000 cells per second. We review these cytometric technologies, capable of high-content, high-throughput single-cell assays.
PMCID: PMC3383392  PMID: 22476049
Fluorescence; Inductively Coupled Plasma Mass Spectrometry; Single Cell Analysis; Immunophenotyping; Data Analysis
9.  Single Cell Mass Cytometry Adapted to Measurements of the Cell Cycle1 
Mass cytometry is a recently introduced technology that utilizes transition element isotope-tagged antibodies for protein detection on a single-cell basis. By circumventing the limitations of emission spectral overlap associated with fluorochromes utilized in traditional flow cytometry, mass cytometry currently allows measurement of up to 40 parameters per cell. Recently a comprehensive mass cytometry analysis was described for the hematopoietic differentiation program in human bone marrow from a healthy donor. The present study describes approaches to delineate cell cycle stages utilizing iododeoxyuridine (IdU) to mark cells in S phase, simultaneously with antibodies against cyclin B1, cyclin A, and phosphorylated histone H3 (S28) that characterize the other cell cycle phases. Protocols were developed in which an antibody against phosphorylated retinoblastoma protein (Rb) at serines 807 and 811 was used to separate cells in G0 and G1 phases of the cell cycle. This mass cytometry method yielded cell cycle distributions of both normal and cancer cell populations that were equivalent to those obtained by traditional fluorescence cytometry techniques. We applied this to map the cell cycle phases of cells spanning the hematopoietic hierarchy in healthy human bone marrow as a prelude to later studies with cancers and other disorders of this lineage.
PMCID: PMC3667754  PMID: 22693166
Mass Cytometry; Cell Cycle; Flow Cytometry; Retinoblastoma; iododeoxyuridine; hematopoiesis
10.  Decoupling of Tumor-Initiating Activity from Stable Immunophenotype In HoxA9-Meis1 Driven AML 
Cell Stem Cell  2012;10(2):210-217.
Increasing evidence suggests tumors are maintained by cancer stem cells; however, their nature remains controversial. In a HoxA9-Meis1 (H9M) model of acute myeloid leukemia (AML), we found that tumor-initiating activity existed in three, immunophenotypically distinct compartments, corresponding to disparate lineages on the normal hematopoietic hierarchy—stem/progenitor cells (Lin−kit+), and committed progenitors of the myeloid (Gr1+kit+) and lymphoid lineages (Lym+kit+). These distinct tumor-initiating cells (TIC) clonally recapitulated the immunophenotypic spectrum of the original tumor in vivo (including cells with a less-differentiated immunophenotype) and shared signaling networks, such that in vivo pharmacologic targeting of conserved TIC survival pathways (DNA methyltransferase and MEK phosphorylation) significantly increased survival. Collectively, H9M AML is organized as an atypical hierarchy that defies the strict lineage marker boundaries and unidirectional differentiation of normal hematopoiesis. Moreover, this suggests that in certain malignancies tumor-initiation activity (or “cancer-stemness”) can represent a cellular state that exists independently of distinct immunophenotypic definition.
PMCID: PMC3273989  PMID: 22305570
11.  COP9 Signalosome Component JAB1/CSN5 Is Necessary for T Cell Signaling through LFA-1 and HIV-1 Replication 
PLoS ONE  2012;7(7):e41725.
To determine critical host factors involved in HIV-1 replication, a dominant effector genetics approach was developed to reveal signaling pathways on which HIV-1 depends for replication. A large library of short peptide aptamers was expressed via retroviral delivery in T cells. Peptides that interfered with T cell activation-dependent processes that might support HIV-1 replication were identified. One of the selected peptides altered signaling, lead to a difference in T cell activation status, and inhibited HIV-1 replication. The target of the peptide was JAB1/CSN5, a component of the signalosome complex. JAB1 expression overcame the inhibition of HIV-1 replication in the presence of peptide and also promoted HIV-1 replication in activated primary CD4+ T cells. This peptide blocked physiological release of JAB1 from the accessory T cell surface protein LFA-1, downstream AP-1 dependent events, NFAT activation, and HIV-1 replication. Thus, genetic selection for intracellular aptamer inhibitors of host cell processes proximal to signals at the immunological synapse of T cells can define unique mechanisms important to HIV-1 replication.
PMCID: PMC3404009  PMID: 22911848
12.  Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with SPADE 
Nature biotechnology  2011;29(10):886-891.
Multiparametric single-cell analysis is critical for understanding cellular heterogeneity. Despite recent technological advances in single-cell measurements, methods for analyzing high-dimensional single-cell data are often subjective, labor intensive and require prior knowledge of the biological system under investigation. To objectively uncover cellular heterogeneity from single-cell measurements, we present a novel computational approach, Spanning-tree Progression Analysis of Density-normalized Events (SPADE). We applied SPADE to cytometry data of mouse and human bone marrow. In both cases, SPADE organized cells in a hierarchy of related phenotypes that partially recapitulated well-described patterns of hematopoiesis. In addition, SPADE produced a map of intracellular signal activation across the landscape of human hematopoietic development. SPADE revealed a functionally distinct cell population, natural killer (NK) cells, without using any NK-specific parameters. SPADE is a versatile method that facilitates the analysis of cellular heterogeneity, the identification of cell types, and comparison of functional markers in response to perturbations.
PMCID: PMC3196363  PMID: 21964415
13.  Structural linkage between ligand discrimination and receptor activation by type I interferons 
Cell  2011;146(4):621-632.
Type I Interferons (IFNs) are important cytokines for innate immunity against viruses and cancer. Sixteen human IFN variants signal through the same cell surface receptors, IFNAR1 and IFNAR2, yet they can evoke markedly different physiological effects. The crystal structures of two human type I IFN ternary signaling complexes containing IFNα2 and IFNω reveal recognition modes and heterotrimeric architectures that are unique amongst the cytokine receptor superfamily, but conserved between different type I IFNs. Receptor-ligand cross-reactivity is enabled by conserved receptor-ligand "anchor-points" interspersed amongst ligand-specific interactions that ‘tune’ the relative IFN binding affinities, in an apparent extracellular ‘ligand proofreading’ mechanism that modulates biological activity. Functional differences between IFNs are linked to their respective receptor recognition chemistries, in concert with a ligand-induced conformational change in IFNAR1, that collectively control signal initiation and complex stability, ultimately regulating differential STAT phosphorylation profiles, receptor internalization rates, and downstream gene expression patterns.
PMCID: PMC3166218  PMID: 21854986
14.  Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum 
Science (New York, N.y.)  2011;332(6030):687-696.
Flow cytometry is an essential tool for dissecting the functional complexity of hematopoiesis. We used single-cell “mass cytometry” to examine healthy human bone marrow, measuring 34 parameters simultaneously in single cells (binding of 31 antibodies, viability, DNA content, and relative cell size). The signaling behavior of cell subsets spanning a defined hematopoietic hierarchy was monitored with 18 simultaneous markers of functional signaling states perturbed by a set of ex vivo stimuli and inhibitors. The data set allowed for an algorithmically driven assembly of related cell types defined by surface antigen expression, providing a superimposable map of cell signaling responses in combination with drug inhibition. Visualized in this manner, the analysis revealed previously unappreciated instances of both precise signaling responses that were bounded within conventionally defined cell subsets and more continuous phosphorylation responses that crossed cell population boundaries in unexpected manners yet tracked closely with cellular phenotype. Collectively, such single-cell analyses provide system-wide views of immune signaling in healthy human hematopoiesis, against which drug action and disease can be compared for mechanistic studies and pharmacologic intervention.
PMCID: PMC3273988  PMID: 21551058
15.  Electron Microscopy Localization and Characterization of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Leukemia Cells 
Ultramicroscopy  2008;109(1):111-121.
We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet Scanning Electron Microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron detector (BSE) was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution Transmission Electron Microscope (TEM) images and Scanning Auger Electron Spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.
PMCID: PMC2650478  PMID: 18995965
SERS Nanoparticles on Cells; Scanning Electron Microscopy; Transmission Electron Microscopy; Scanning Auger Electron Spectroscopy
16.  Single Cell Profiling Identifies Aberrant STAT5 Activation in Myeloid Malignancies with Specific Clinical and Biologic Correlates 
Cancer cell  2008;14(4):335-343.
Progress in understanding the molecular pathogenesis of human myeloproliferative disorders (MPDs) has led to guidelines incorporating genetic assays with histopathology during diagnosis. Advances in flow cytometry have made it possible to simultaneously measure cell type and signaling abnormalities arising as a consequence of genetic pathologies. Using flow cytometry, we observed a specific evoked STAT5 signaling signature in a subset of samples from patients suspected of having juvenile myelomonocytic leukemia (JMML), an aggressive MPD with a challenging clinical presentation during active disease. This signature was a specific feature involving JAK-STAT signaling, suggesting a critical role of this pathway in the biological mechanism of this disorder and indicating potential targets for future therapies.
Recent advances have enabled simultaneous measurement of cell type and cell signals in primary populations using flow cytometry. This technique enables the question, "Can we track oncogenic cell populations from diagnosis through disease evolution via signaling?" Doing so in an era of using specific inhibitors against components of key signal transduction pathways will be necessary to assess treatment effects in human patients and adapt as cancer cells alter their signaling in response to these treatments. This work uses such an approach to follow patients over time and shows that disease status in juvenile myelomonocytic leukemia (JMML) -- at diagnosis, remission, relapse, and transformation -- is indicated by a subset of cells with an abnormal signaling profile.
PMCID: PMC2647559  PMID: 18835035
17.  Stage Dependent Aberrant Regulation of Cytokine-STAT Signaling in Murine Systemic Lupus Erythematosus 
PLoS ONE  2009;4(8):e6756.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease of unknown etiology that involves multiple interacting cell types driven by numerous cytokines and autoimmune epitopes. Although the initiating events leading to SLE pathology are not understood, there is a growing realization that dysregulated cytokine action on immune cells plays an important role in promoting the inflammatory autoimmune state. We applied phospho-specific flow cytometry to characterize the extent to which regulation of cytokine signal transduction through the STAT family of transcription factors is disturbed during the progression of SLE. Using a panel of 10 cytokines thought to have causal roles in the disease, we measured signaling responses at the single-cell level in five immune cell types from the MRLlpr murine model. This generated a highly multiplexed view of how cytokine stimuli are processed by intracellular signaling networks in adaptive and innate immune cells during different stages of SLE pathogenesis. We report that robust changes in cytokine signal transduction occur during the progression of SLE in multiple immune cell subtypes including increased T cell responsiveness to IL-10 and ablation of Stat1 responses to IFNα, IFNγ, IL-6, and IL-21, Stat3 responses to IL-6, Stat5 responses to IL-15, and Stat6 responses to IL-4. We found increased intracellular expression of Suppressor of Cytokine Signaling 1 protein correlated with negative regulation of Stat1 responses to inflammatory cytokines. The results provide evidence of negative feedback regulation opposing inflammatory cytokines that have self-sustaining activities and suggest a cytokine-driven oscillator circuit may drive the periodic disease activity observed in many SLE patients.
PMCID: PMC2727051  PMID: 19707593
18.  A Novel Method for Detection of Phosphorylation in Single Cells by Surface Enhanced Raman Scattering (SERS) using Composite Organic-Inorganic Nanoparticles (COINs) 
PLoS ONE  2009;4(4):e5206.
Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities.
Methodology/Principal Findings
To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using “Composite Organic-Inorganic Nanoparticles” (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry.
Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.
PMCID: PMC2666268  PMID: 19367337
19.  Single-Cell, Phosphoepitope-Specific Analysis Demonstrates Cell Type- and Pathway-Specific Dysregulation of Jak/STAT and MAPK Signaling Associated with In Vivo Human Immunodeficiency Virus Type 1 Infection▿  
Journal of Virology  2008;82(7):3702-3712.
Despite extensive evidence of cell signaling alterations induced by human immunodeficiency virus type 1 (HIV-1) in vitro, the relevance of these changes to the clinical and/or immunologic status of HIV-1-infected individuals is often unclear. As such, mapping the details of cell type-specific degradation of immune function as a consequence of changes to signaling network responses has not been readily accessible. We used a flow cytometric-based assay of signaling to determine Janus kinase/signal transducers and activators of transcription (Jak/STAT) signaling changes at the single-cell level within distinct cell subsets from the primary immune cells of HIV-1-infected donors. We identified a specific defect in granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven Stat5 phosphorylation in the monocytes of HIV-1+ donors. This inhibition was statistically significant in a cohort of treated and untreated individuals. Ex vivo Stat5 phosphorylation levels varied among HIV-1+ donors but did not correlate with CD4+ T-cell counts or HIV-1 plasma viral load. Low Stat5 activation occurred in HIV-1-infected donors despite normal GM-CSF receptor levels. Investigation of mitogen-activated protein kinase (MAPK) pathways, also stimulated by GM-CSF, led to the observation that lipopolysaccharide-stimulated extracellular signal-regulated kinase phosphorylation is enhanced in monocytes. Thus, we have identified a specific, imbalanced monocyte signaling profile, with inhibition of STAT and enhancement of MAPK signaling, associated with HIV-1 infection. This understanding of altered monocyte signaling responses that contribute to defective antigen presentation during HIV-1 infection could lead to immunotherapeutic approaches that compensate for the deficiency.
PMCID: PMC2268489  PMID: 18216116
20.  The ERK Mitogen-Activated Protein Kinase Pathway Contributes to Ebola Virus Glycoprotein-Induced Cytotoxicity▿  
Journal of Virology  2006;81(3):1230-1240.
Ebola virus is a highly lethal pathogen that causes hemorrhagic fever in humans and nonhuman primates. Among the seven known viral gene products, the envelope glycoprotein (GP) alone induces cell rounding and detachment that ultimately leads to cell death. Cellular cytoxicity is not seen with comparable levels of expression of a mutant form of GP lacking a mucin-like domain (GPΔmuc). GP-induced cell death is nonapoptotic and is preceded by downmodulation of cell surface molecules involved in signaling pathways, including certain integrins and epidermal growth factor receptor. To investigate the mechanism of GP-induced cellular toxicity, we analyzed the activation of several signal transduction pathways involved in cell growth and survival. The active form of extracellular signal-regulated kinases types 1 and 2 (ERK1/2), phospho-ERK1/2, was reduced in cells expressing GP compared to those expressing GPΔmuc as determined by flow cytometry, in contrast to the case for several other signaling proteins. Subsequent analysis of the activation states and kinase activities of related kinases revealed a more pronounced effect on the ERK2 kinase isoform. Disruption of ERK2 activity by a dominant negative ERK or by small interfering RNA-mediated ERK2 knockdown potentiated the decrease in αV integrin expression associated with toxicity. Conversely, activation of the pathway through the expression of a constitutively active form of ERK2 significantly protected against this effect. These results indicate that the ERK signaling cascade mediates GP-mediated cytotoxicity and plays a role in pathogenicity induced by this gene product.
PMCID: PMC1797502  PMID: 17108034
21.  Chemical combination effects predict connectivity in biological systems 
Chemical synergies can be novel probes of biological systems.Simulated response shapes depend on target connectivity in a pathway.Experiments with yeast and cancer cells confirm simulated effects.Profiles across many combinations yield target location information.
Living organisms are built of interacting components, whose function and dysfunction can be described through dynamic network models (Davidson et al, 2002). Systems Biology involves the iterative construction of such models (Ideker et al, 2001), and may eventually improve the understanding of diseases using in silico simulations. Such simulations may eventually permit drugs to be prioritized for clinical trials, reducing potential risks and increasing the likelihood of successful outcomes. Given the complexity of biological systems, constructing realistic models will require large and diverse sets of connectivity data.
Chemical combinations provide a new window into biological connectivity. Information gleaned from targeted combinations, such as paired mutations (Tong et al, 2004), has proven to be especially useful for revealing functional interactions between components. We have been screening chemical combinations for therapeutic synergies (Borisy et al, 2003; Zimmermann et al, 2007), collecting full-dose matrices where combinations are tested in all possible pairings of serially diluted single agent doses (Figure 1). Such screens yield a variety of response surfaces with distinct shapes for combinations that work through different known mechanisms, suggesting that combination effects may contain information on the nature of functional connections between drug targets.
Simulations of biological pathways predict synergistic responses to inhibitors that depend on target connectivity. We explored theoretical predictions by simulating a metabolic pathway with pairs of inhibitors aimed at different targets with varying doses. We found that the shape of each combination response depended on how the inhibitor pair's targets were connected in the pathway (Figure 2). The predicted response shapes were robust to plausible variations in the simulated pathway that did not affect the network topology (e.g., kinetic assumptions, parameter values, and nonlinear response functions), but were very sensitive to topological alterations in the modelled network (e.g., feedback regulation or changing the type of junction at a branch point). These findings suggest that connectivity of the inhibitor targets has a major influence on combination response morphology.
The predicted shapes were experimentally confirmed in yeast combination experiments. The proliferation experiment used drugs focused on the sterol biosynthesis pathway, which is mostly linear between the targets covered in this study, and is known to be regulated by negative feedback (Gardner et al, 2001). The combinations between sterol inhibitors confirmed expectations from our simulations, showing dose-additive responses for pairs targeting the same enzyme and strong synergies across enzymes of the shape predicted in our simulations for linear pathways under negative feedback. Combinations across pathways showed much more variable responses with a trend towards less synergy on average.
Further experimental support was obtained from human cells. A combination screen of 90 annotated drugs in a human tumour cell line (HCT116) proliferation assay produced strong synergies for combinations within pathways and more variable effects between targeted functions. Synergy profiles (sets of all synergy scores involving each drug) also showed a greater degree of similarity for pairs of drugs with related targets. Finally, the most extreme outliers were dominated by inhibitors of kinases that are especially critical for HCT116 proliferation (Awwad et al, 2003), with effects that are consistent across mechanistic replicates, showing that chemical combinations can highlight biologically relevant cellular processes.
This study demonstrates the potential of chemical combinations for exploring functional connectivity in biological systems. This information complements genetic studies by providing more details through variable dosing, by directly targeting single domains of multi-domain proteins, and by probing cell types that are not amenable to mutagenesis. Responses from large chemical combination screens can be used to identify molecular targets through chemical–genetic profiling (Macdonald et al, 2006), or to directly constrain network models by means of a prediction-validation procedure (Ideker et al, 2001). This initial exploration can be extended to cover a wider range of response shapes and network topologies, as well as to combinations of three or more chemical agents. Moreover, this approach may even be applicable to non-biological systems where responses to targeted perturbations can be measured.
Efforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells. The response morphology yields detailed connectivity constraints between nearby targets, and synergy profiles across many combinations show relatedness between targets in the whole network. Constraints from chemical combinations complement genetic studies, because they probe different cellular components and can be applied to disease models that are not amenable to mutagenesis. Chemical probes also offer increased flexibility, as they can be continuously dosed, temporally controlled, and readily combined. After extending this initial study to cover a wider range of combination effects and pathway topologies, chemical combinations may be used to refine network models or to identify novel targets. This response surface methodology may even apply to non-biological systems where responses to targeted perturbations can be measured.
PMCID: PMC1828746  PMID: 17332758
chemical genetics; combinations and synergy; metabolic and regulatory networks; simulation and data analysis
22.  Differential role of ICAM ligands in determination of human memory T cell differentiation 
BMC Immunology  2007;8:2.
Leukocyte Function Antigen-1 (LFA-1) is a primary adhesion molecule that plays important roles in T cell activation, leukocyte recirculation, and trans-endothelial migration. By applying a multivariate intracellular phospho-proteomic analysis, we demonstrate that LFA-1 differentially activates signaling molecules.
Signal intensity was dependent on both ICAM ligand and LFA-1 concentration. In the presence of CD3 and CD28 stimulation, ICAM-2 and ICAM-3 decreased TGFβ1 production more than ICAM-1. In long-term differentiation experiments, stimulation with ICAM-3, CD3, and CD28 generated IFNγ producing CD4+CD45RO+CD62L-CD11aBrightCD27- cells that had increased expression of intracellular BCL2, displayed distinct chemokine receptor profiles, and exhibited distinct migratory characteristics. Only CD3/CD28 with ICAM-3 generated CD4+CD45RO+CD62L-CD11aBrightCD27- cells that were functionally responsive to chemotaxis and exhibited higher frequencies of cells that signaled to JNK and ERK1/2 upon stimulation with MIP3α. Furthermore, these reports identify that the LFA-1 receptor, when presented with multiple ligands, can result in distinct T cell differentiation states and suggest that the combinatorial integration of ICAM ligand interactions with LFA-1 have functional consequences for T cell biology.
Thus, the ICAM ligands, differentially modulate LFA-1 signaling in T cells and potentiate the development of memory human T cells in vitro. These findings are of importance in a mechanistic understanding of memory cell differentiation and ex vivo generation of memory cell subsets for therapeutic applications.
PMCID: PMC1784112  PMID: 17233909
23.  T-Cell Tropism and the Role of ORF66 Protein in Pathogenesis of Varicella-Zoster Virus Infection 
Journal of Virology  2005;79(20):12921-12933.
The pathogenesis of varicella-zoster virus (VZV) involves a cell-associated viremia during which infectious virus is carried from sites of respiratory mucosal inoculation to the skin. We now demonstrate that VZV infection of T cells is associated with robust virion production and modulation of the apoptosis and interferon pathways within these cells. The VZV serine/threonine protein kinase encoded by ORF66 is essential for the efficient replication of VZV in T cells. Preventing ORF66 protein expression by stop codon insertion (pOka66S) impaired the growth of the parent Oka (pOka) strain in T cells in SCID-hu T-cell xenografts in vivo and reduced formation of VZV virions. The lack of ORF66 protein also increased the susceptibility of infected T cells to apoptosis and reduced the capacity of the virus to interfere with induction of the interferon (IFN) signaling pathway following exposure to IFN-γ. However, preventing ORF66 protein expression only slightly reduced growth in melanoma cells in culture and did not diminish virion formation in these cells. The pOka66S virus showed only a slight defect in growth in SCID-hu skin implants compared with intact pOka. These observations suggest that the ORF66 kinase plays a unique role during infection of T cells and supports VZV T-cell tropism by contributing to immune evasion and enhancing survival of infected T cells.
PMCID: PMC1235817  PMID: 16188994
24.  Growth Inhibition and Apoptosis Due to Restoration of E2A Activity in T Cell Acute Lymphoblastic Leukemia Cells  
Two models have been proposed for the molecular mechanism by which the Tal1 oncogene causes T cell acute lymphoblastic leukemia (T-ALL). The activation model suggests that Tal1 as heterodimers with the E2A transcription factor activates the expression of oncogenes. The inhibition model postulates that Tal1 interferes with the tumor-suppressing function of E2A. In the Jurkat T cell line, originally derived from a patient with T-ALL, Tal1 is complexed with E2A proteins and the transcriptional activity of E2A is very low. When E2A activity was restored by expressing an E2A–Tal1 fusion protein, E-T/2, the Jurkat cells underwent growth arrest and subsequently apoptosis, thus supporting the inhibition model and suggesting that E2A loss may contribute to leukemic progression.
PMCID: PMC2192921  PMID: 9927512
Tal1; E2A; apoptosis; growth inhibition; leukemogenesis
25.  Analysis of Genomic Integrity and p53-Dependent G1 Checkpoint in Telomerase-Induced Extended-Life-Span Human Fibroblasts 
Molecular and Cellular Biology  1999;19(3):2373-2379.
Life span determination in normal human cells may be regulated by nucleoprotein structures called telomeres, the physical ends of eukaryotic chromosomes. Telomeres have been shown to be essential for chromosome stability and function and to shorten with each cell division in normal human cells in culture and with age in vivo. Reversal of telomere shortening by the forced expression of telomerase in normal cells has been shown to elongate telomeres and extend the replicative life span (H. Vaziri and S. Benchimol, Curr. Biol. 8:279–282, 1998; A. G. Bodnar et al., Science 279:349–352, 1998). Extension of the life span as a consequence of the functional inactivation of p53 is frequently associated with loss of genomic stability. Analysis of telomerase-induced extended-life-span fibroblast (TIELF) cells by G banding and spectral karyotyping indicated that forced extension of the life span by telomerase led to the transient formation of aberrant structures, which were subsequently resolved in higher passages. However, the p53-dependent G1 checkpoint was intact as assessed by functional activation of p53 protein in response to ionizing radiation and subsequent p53-mediated induction of p21Waf1/Cip1/Sdi1. TIELF cells were not tumorigenic and had a normal DNA strand break rejoining activity and normal radiosensitivity in response to ionizing radiation.
PMCID: PMC84029  PMID: 10022923

Results 1-25 (26)