PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  QTIPS: A novel method of unsupervised determination of isotopic amino acid distribution in SILAC experiments 
Stable incorporation of labeled amino acids in cell culture is a simple approach to label proteins in vivo for mass spectrometric quantification. Full incorporation of isotopically heavy amino acids facilitates accurate quantification of proteins from different cultures, yet analysis methods for determination of incorporation are cumbersome and time-consuming. We present QTIPS, Quantification by Total Identified Peptides for SILAC, a straightforward, accurate method to determine the level of heavy amino acid incorporation throughout a population of peptides detected by mass spectrometry. Using QTIPS, we show that the incorporation of heavy amino acids in baker’s yeast is unaffected by the use of prototrophic strains, indicating that auxotrophy is not a requirement for SILAC experiments in this organism. This method has general utility for multiple applications where isotopic labeling is used for quantification in mass spectrometry.
doi:10.1016/j.jasms.2010.04.002
PMCID: PMC2914207  PMID: 20451407
QTIPS; SILAC; auxotrophy; yeast
2.  COL4A1 Mutations Cause Ocular Dysgenesis, Neuronal Localization Defects, and Myopathy in Mice and Walker-Warburg Syndrome in Humans 
PLoS Genetics  2011;7(5):e1002062.
Muscle-eye-brain disease (MEB) and Walker Warburg Syndrome (WWS) belong to a spectrum of autosomal recessive diseases characterized by ocular dysgenesis, neuronal migration defects, and congenital muscular dystrophy. Until now, the pathophysiology of MEB/WWS has been attributed to alteration in dystroglycan post-translational modification. Here, we provide evidence that mutations in a gene coding for a major basement membrane protein, collagen IV alpha 1 (COL4A1), are a novel cause of MEB/WWS. Using a combination of histological, molecular, and biochemical approaches, we show that heterozygous Col4a1 mutant mice have ocular dysgenesis, neuronal localization defects, and myopathy characteristic of MEB/WWS. Importantly, we identified putative heterozygous mutations in COL4A1 in two MEB/WWS patients. Both mutations occur within conserved amino acids of the triple-helix-forming domain of the protein, and at least one mutation interferes with secretion of the mutant proteins, resulting instead in intracellular accumulation. Expression and posttranslational modification of dystroglycan is unaltered in Col4a1 mutant mice indicating that COL4A1 mutations represent a distinct pathogenic mechanism underlying MEB/WWS. These findings implicate a novel gene and a novel mechanism in the etiology of MEB/WWS and expand the clinical spectrum of COL4A1-associated disorders.
Author Summary
Muscle-eye-brain disease (MEB) and Walker-Warburg Syndrome (WWS) are devastating childhood diseases that belong to a subgroup of congenital muscular dystrophies (CMDs) characterized by ocular dysgenesis, neuronal migration defects, and congenital myopathy. Genetic studies have revealed a number of genes involved in the etiology of CMDs, and subsequent studies show that alterations in dystroglycan glycosylation underlie MEB/WWS. However, over half of MEB/WWS patients do not have mutations in known genes encoding glycosyltransferases, suggesting that other genes are involved. Here, we describe a novel and genetically complex mouse model for MEB/WWS and identify putative heterozygous mutations in COL4A1 in two MEB/WWS patients. We identify a novel gene implicated in the etiology of MEB/WWS, provide evidence of mechanistic heterogeneity for this subgroup of congenital muscular dystrophies, and develop an assay to test the functional significance of putative COL4A1 mutations. Our findings represent the first evidence for a dominant mutation leading to MEB/WWS–like diseases and expand the spectrum of clinical disorders resulting from Col4a1/COL4A1 mutations.
doi:10.1371/journal.pgen.1002062
PMCID: PMC3098190  PMID: 21625620
3.  Genome-Wide Analysis of Effectors of Peroxisome Biogenesis 
PLoS ONE  2010;5(8):e11953.
Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for β-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function.
doi:10.1371/journal.pone.0011953
PMCID: PMC2915925  PMID: 20694151
4.  The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control 
The Journal of Cell Biology  2005;171(6):955-965.
Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.
doi:10.1083/jcb.200509061
PMCID: PMC2171315  PMID: 16365162
5.  Interactions between Mad1p and the Nuclear Transport Machinery in the Yeast Saccharomyces cerevisiaeD⃞ 
Molecular Biology of the Cell  2005;16(9):4362-4374.
In addition to its role in nucleocytoplasmic transport, the nuclear pore complex (NPC) acts as a docking site for proteins whose apparent primary cellular functions are unrelated to nuclear transport, including Mad1p and Mad2p, two proteins of the spindle assembly checkpoint (SAC) machinery. To understand this relationship, we have mapped domains of yeast Saccharomyces cerevisiae Mad1p that interact with the nuclear transport machinery, including further defining its interactions with the NPC. We showed that a Kap95p/Kap60p-dependent nuclear localization signal, positioned in the C-terminal third of Mad1p, is required for its efficient targeting to the NPC. At the NPC, Mad1p interacts with Nup53p and a presumed Nup60p/Mlp1p/Mlp2p complex through two coiled coil regions within its N terminus. When the SAC is activated, a portion of Mad1p is recruited to kinetochores through an interaction that is mediated by the C-terminal region of Mad1p and requires energy. We showed using photobleaching analysis that in nocodazole-arrested cells Mad1p rapidly cycles between the Mlp proteins and kinetochores. Our further analysis also showed that only the C terminus of Mad1p is required for SAC function and that the NPC, through Nup53p, may act to regulate the duration of the SAC response.
doi:10.1091/mbc.E05-01-0011
PMCID: PMC1196344  PMID: 16000377
6.  Proteomic and genomic characterization of chromatin complexes at a boundary 
The Journal of Cell Biology  2005;169(1):35-47.
We have dissected specialized assemblies on the Saccharomyces cerevisiae genome that help define and preserve the boundaries that separate silent and active chromatin. These assemblies contain characteristic stretches of DNA that flank particular regions of silent chromatin, as well as five distinctively modified histones and a set of protein complexes. The complexes consist of at least 15 chromatin-associated proteins, including DNA pol ɛ, the Isw2-Itc1 and Top2 chromatin remodeling proteins, the Sas3-Spt16 chromatin modifying complex, and Yta7, a bromodomain-containing AAA ATPase. We show that these complexes are important for the faithful maintenance of an established boundary, as disruption of the complexes results in specific, anomalous alterations of the silent and active epigenetic states.
doi:10.1083/jcb.200502104
PMCID: PMC2171912  PMID: 15824130
7.  Transcriptome profiling to identify genes involved in peroxisome assembly and function 
The Journal of Cell Biology  2002;158(2):259-271.
Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis.
doi:10.1083/jcb.200204059
PMCID: PMC2173120  PMID: 12135984
microarray; clustering algorithms; peroxin; PEX25; PEX11
8.  Nup2p Dynamically Associates with the Distal Regions of the Yeast Nuclear Pore Complex 
The Journal of Cell Biology  2001;153(7):1465-1478.
Nucleocytoplasmic transport is mediated by the interplay between soluble transport factors and nucleoporins resident within the nuclear pore complex (NPC). Understanding this process demands knowledge of components of both the soluble and stationary phases and the interface between them. Here, we provide evidence that Nup2p, previously considered to be a typical yeast nucleoporin that binds import- and export-bound karyopherins, dynamically associates with the NPC in a Ran-facilitated manner. When bound to the NPC, Nup2p associates with regions corresponding to the nuclear basket and cytoplasmic fibrils. On the nucleoplasmic face, where the Ran–GTP levels are predicted to be high, Nup2p binds to Nup60p. Deletion of NUP60 renders Nup2p nucleoplasmic and compromises Nup2p-mediated recycling of Kap60p/Srp1p. Depletion of Ran–GTP by metabolic poisoning, disruption of the Ran cycle, or in vitro by cell lysis, results in a shift of Nup2p from the nucleoplasm to the cytoplasmic face of the NPC. This mobility of Nup2p was also detected using heterokaryons where, unlike nucleoporins, Nup2p was observed to move from one nucleus to the other. Together, our data support a model in which Nup2p movement facilitates the transition between the import and export phases of nucleocytoplasmic transport.
PMCID: PMC2150724  PMID: 11425876
nucleoporin; nuclear transport; karyopherin; importin; exportin

Results 1-8 (8)