PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries 
BMC Plant Biology  2015;15:28.
Background
QTLs controlling individual sugars and acids (fructose, glucose, malic acid and tartaric acid) in grape berries have not yet been identified. The present study aimed to construct a high-density, high-quality genetic map of a winemaking grape cross with a complex parentage (V. vinifera × V. amurensis) × ((V. labrusca × V. riparia) × V. vinifera), using next-generation restriction site-associated DNA sequencing, and then to identify loci related to phenotypic variability over three years.
Results
In total, 1 826 SNP-based markers were developed. Of these, 621 markers were assembled into 19 linkage groups (LGs) for the maternal map, 696 for the paternal map, and 1 254 for the integrated map. Markers showed good linear agreement on most chromosomes between our genetic maps and the previously published V. vinifera reference sequence. However marker order was different in some chromosome regions, indicating both conservation and variation within the genome. Despite the identification of a range of QTLs controlling the traits of interest, these QTLs explained a relatively small percentage of the observed phenotypic variance. Although they exhibited a large degree of instability from year to year, QTLs were identified for all traits but tartaric acid and titratable acidity in the three years of the study; however only the QTLs for malic acid and β ratio (tartaric acid-to-malic acid ratio) were stable in two years. QTLs related to sugars were located within ten LGs (01, 02, 03, 04, 07, 09, 11, 14, 17, 18), and those related to acids within three LGs (06, 13, 18). Overlapping QTLs in LG14 were observed for fructose, glucose and total sugar. Malic acid, total acid and β ratio each had several QTLs in LG18, and malic acid also had a QTL in LG06. A set of 10 genes underlying these QTLs may be involved in determining the malic acid content of berries.
Conclusion
The genetic map constructed in this study is potentially a high-density, high-quality map, which could be used for QTL detection, genome comparison, and sequence assembly. It may also serve to broaden our understanding of the grape genome.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-015-0428-2) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-015-0428-2
PMCID: PMC4329212  PMID: 25644551
Berry quality; Genetic map; Next-generation sequencing (NGS); QTL analysis; Quantitative trait loci; Restriction-site associated DNA (RAD); Vitis
2.  Reduction of Acute Rejection by Bone Marrow Mesenchymal Stem Cells during Rat Small Bowel Transplantation 
PLoS ONE  2014;9(12):e114528.
Background
Bone marrow mesenchymal stem cells (BMMSCs) have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats.
Methods
Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control), isogeneically transplanted rats (BN-BN) and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg) cells were assessed at each time point.
Results
Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th)1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL)-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ while upregulating IL-10 and transforming growth factor (TGF)-β expression and increasing Treg levels.
Conclusion
BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation.
doi:10.1371/journal.pone.0114528
PMCID: PMC4266507  PMID: 25500836
3.  Effects on Hardness and Elastic Modulus for DSS-8 Peptide Treatment on Remineralization of Human Dental Tissues 
Dental remineralization may be achieved by mediating the interactions between tooth surfaces with free ions and biomimetic peptides. We recently developed octuplet repeats of aspartate-serine-serine (DSS-8) peptide, which occurs in high abundance in naturally occurring proteins that are critical for tooth remineralization. In this paper, we evaluated the possible role of DSS-8 in enamel remineralization. Human enamel specimens were demineralized, exposed briefly to DSS-8 solution, and then exposed to concentrated ionic solutions that favor remineralization. Enamel nano-mechanical behaviors, hardness and elastic modulus, at various stages of treatment were determined by nanoindentation. The phase, microstructure and morphology of the resultant surfaces were characterized using the grazing incidence X-ray diffraction (GIXD), variable pressure scanning electron microscopy (VPSEM), and atomic force microscopy (AFM), respectively. Nanoindentation results show that the DSS-8 remineralization effectively improves the mechanical and elastic properties for demineralized enamel.
doi:10.1557/PROC-1132-Z09-05
PMCID: PMC4209483  PMID: 25355990
Enamel; Peptide; Nanoindentation; Remineralization
4.  A Novel Modular Polymer Platform for the Treatment of Head and Neck Squamous Cell Carcinoma (HNSCC) in an Animal Model 
Objective
To evaluate the therapeutic efficacy of a novel modular polymer platform in the treatment of HNSCC.
Study Design
in vivo study.
Setting
Academic research laboratory.
Subjects and Methods
C3H/HeJ mice and SCID Beige mice were randomized to receive implantation of (1) no polymer; (2) plain polymer; (3) plain polymer with local cisplatin injection; (4) cisplatin polymer. The two groups of mice implanted with cisplatin polymer or no polymer were further randomized to receive (1) 4 Grays external beam radiation for 4 days; (2) no radiation. Tumor size was measured until the mice were euthanized. At necropsy, the tumors were excised and weighed.
Results
Our results using this novel polymer platform demonstrate a significant reduction in tumor growth. The cisplatin secreting polymer effectively reduced human head and neck tumor growth in SCID mice by 17 fold (P < 0.01); and SCCVII/SF tumors in the C3H/HeJ mice by over 16-fold (P < 0.01) as compared to control, plain polymer, and plain polymer + intratumoral cisplatin injection groups. We also observed a statistically significant lower tumor weight among mice treated with cisplatin polymer and concomitant radiation compared to the radiation alone group and the control group.
Conclusion
Herein we demonstrate the efficacy of a novel polymer platform in delivering cisplatin to a partially resected SCC in a murine model. Our results indicate that this polymer may represent a new therapeutic modality for patients with HNSCC. Once this polymer platform is optimized we will plan for validation in the context of a prospective trial in patients with unresectable advanced or recurrent HNSCC.
doi:10.1001/archoto.2012.20
PMCID: PMC4167672  PMID: 22508626
5.  Genome-Wide Transcriptional Profiles of the Berry Skin of Two Red Grape Cultivars (Vitis vinifera) in Which Anthocyanin Synthesis Is Sunlight-Dependent or -Independent 
PLoS ONE  2014;9(8):e105959.
Global gene expression was analyzed in the berry skin of two red grape cultivars, which can (‘Jingyan’) or cannot (‘Jingxiu’) synthesize anthocyanins after sunlight exclusion from fruit set until maturity. Gene transcripts responding to sunlight exclusion in ‘Jingyan’ were less complex than in ‘Jingxiu’; 528 genes were induced and 383 repressed in the former, whereas 2655 genes were induced and 205 suppressed in ‘Jingxiu’. They were regulated either in the same or opposing manner in the two cultivars, or in only one cultivar. In addition to VvUFGT and VvMYBA1, some candidate genes (e.g. AOMT, GST, and ANP) were identified which are probably involved in the differential responses of ‘Jingxiu’ and ‘Jingyan’ to sunlight exclusion. In addition, 26 MYB, 14 bHLH and 23 WD40 genes responded differently to sunlight exclusion in the two cultivars. Interestingly, all of the 189 genes classified as being relevant to ubiquitin-dependent protein degradation were down-regulated by sunlight exclusion in ‘Jingxiu’, but the majority (162) remained unchanged in ‘Jingyan’ berry skin. It would be of interest to determine the precise role of the ubiquitin pathway following sunlight exclusion, particularly the role of COP9 signalosome, cullins, RING-Box 1, and COP1-interacting proteins. Only a few genes in the light signal system were found to be regulated by sunlight exclusion in either or both cultivars. This study provides a valuable overview of the transcriptome changes and gives insight into the genetic background that may be responsible for sunlight-dependent versus -independent anthocyanin biosynthesis in berry skin.
doi:10.1371/journal.pone.0105959
PMCID: PMC4144973  PMID: 25158067
6.  Protective effect of bone marrow mesenchymal stem cells in intestinal barrier permeability after heterotopic intestinal transplantation 
AIM: To explore the protective effect of bone marrow mesenchymal stem cells (BM MSCs) in the small intestinal mucosal barrier following heterotopic intestinal transplantation (HIT) in a rat model.
METHODS: BM MSCs were isolated from male Lewis rats by density gradient centrifugation, cultured, and analyzed by flow cytometry. The HIT models were divided into a non-rejection group, saline-treated rejection group (via penile vein), and BM MSC–treated group (via penile vein). Intestinal mucosal barrier injury was estimated by diamine oxidase (DAO) and D-lactic acid (D-LA) expression levels. Tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) were detected by enzyme-linked immunosorbent assay. Ultrastructural change of tight junctions (TJs) was observed under transmission electron microscope. Expression levels of the TJ proteins occludin and zona occludens (ZO)-1, affected by the inflammatory factors, were measured using real-time polymerase chain reaction and Western blotting.
RESULTS: The pathological score at each time point after surgery indicated significantly less serious injury in the BM MSCs-treated group than in the rejection group (P < 0.05). In the former, graft levels of DAO and D-LA were reduced, and TNF-α and INF-γ production was inhibited (at day 7: 10.6473 ± 0.0710 vs 17.2128 ± 0.4991, P < 0.05; 545.1506 ± 31.9416 vs 810.2637 ± 25.1175, P < 0.05). IL-10 and TGF-β production was increased greatly (at day 7: 125.7773 ± 4.7719 vs 80.3756 ± 2.5866, P < 0.05; 234.5273 ± 9.3980 vs 545.1506 ± 31.9416, P < 0.05). There was increased expression of occludin and ZO-1 protein (at day 7: 0.2674 ± 0.0128 vs 0.1352 ± 0.0142, P < 0.05; at day 5: 0.7189 ± 0.0289 vs 0.4556 ± 0.0242, P < 0.05) and mRNA (at day 7: 0.3860 ± 0.0254 vs 0.1673 ± 0.0369, P < 0.05; at day 5: 0.5727 ± 0.0419 vs 0.3598 ± 0.0242, P < 0.05).
CONCLUSION: BM MSCs can improve intestinal barrier permeability, repair TJs, and increase occludin and ZO-1 protein expression. With altered cytokine levels, they can protect the intestinal mucosa after transplantation.
doi:10.3748/wjg.v20.i23.7442
PMCID: PMC4064089  PMID: 24966614
Bone marrow mesenchymal stem cells; Small intestinal transplantation; Intestinal mucosal barrier; Occludin; Zona occludens-1
7.  The Relationship between Total Bilirubin Levels and Total Mortality in Older Adults: The United States National Health and Nutrition Examination Survey (NHANES) 1999-2004 
PLoS ONE  2014;9(4):e94479.
Objective
Due to its anti-oxidant and anti-inflammatory properties, bilirubin has been associated with reduced cardiovascular risk. A recent study demonstrated an L-shaped association of pre-treatment total bilirubin levels with total mortality in a statin-treated cohort. We therefore investigated the association of total bilirubin levels with total mortality in a nationally representative sample of older adults from the general population.
Methods
A total of 4,303 participants aged ≥60 years from the United States National Health and Nutrition Examination Survey 1999–2004 with mortality data followed up through December 31, 2006 were included in this analysis, with a mean follow-up period of 4.5 years.
Results
Participants with total bilirubin levels of 0.1–0.4 mg/dl had the highest mortality rate (19.8%). Compared with participants with total bilirubin levels of 0.5–0.7 mg/dl and in a multivariable regression model, a lower total bilirubin level of 0.1–0.4 mg/dl was associated with higher risk of total mortality (hazard ratios, 1.36; 95% confidence interval, 1.07–1.72; P = 0.012), while higher levels (≥0.8 mg/dl) also tended to be associated with higher risk of total mortality, but this did not reach statistical significance (hazard ratios, 1.24; 95% confidence interval, 0.98–1.56; P = 0.072).
Conclusion
In this nationally representative sample of older adults, the association of total bilirubin levels with total mortality was the highest among those with a level between 0.1 and 0.4 mg/dl. Further studies are needed to investigate whether higher total bilirubin levels could be associated with a higher mortality risk, compared to a level of 0.5–0.7 mg/dl.
doi:10.1371/journal.pone.0094479
PMCID: PMC3984185  PMID: 24728477
8.  Classification, clinicopathologic features and treatment of gastric neuroendocrine tumors 
Gastric neuroendocrine tumors (GNETs) are rare lesions characterized by hypergastrinemia that arise from enterochromaffin-like cells of the stomach. GNETs consist of a heterogeneous group of neoplasms comprising tumor types of varying pathogenesis, histomorphologic characteristics, and biological behavior. A classification system has been proposed that distinguishes four types of GNETs; the clinicopathological features of the tumor, its prognosis, and the patient’s survival strictly depend on this classification. Thus, correct management of patients with GNETs can only be proposed when the tumor has been classified by an accurate pathological and clinical evaluation of the patient. Recently developed cancer therapies such as inhibition of angiogenesis or molecular targeting of growth factor receptors have been used to treat GNETs, but the only definitive therapy is the complete resection of the tumor. Here we review the literature on GNETs, and summarize the classification, clinicopathological features (especially prognosis), clinical presentations and current practice of management of GNETs. We also present the latest findings on new gene markers for GNETs, and discuss the effective drugs developed for the diagnosis, prognosis and treatment of GNETs.
doi:10.3748/wjg.v20.i1.118
PMCID: PMC3886000  PMID: 24415864
Gastric neuroendocrine tumor; Classification; Clinicopathological significance; Diagnosis; Prognosis; Treatment
9.  Perivascular Stem Cells: A Prospectively Purified Mesenchymal Stem Cell Population for Bone Tissue Engineering 
Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering, but the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. Human perivascular stem cells (PSCs) were prospectively purified from adipose tissue, and their bone-forming capacity was compared with that of traditionally derived SVF. It was found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine.
Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis.
doi:10.5966/sctm.2012-0002
PMCID: PMC3659717  PMID: 23197855
Adult stem cells; Pericytes; Mesenchymal stem cells; Osteoblast
10.  Kynurenine is a novel endothelium-derived relaxing factor produced during inflammation 
Nature medicine  2010;16(3):279-285.
Control of blood vessel tone is central to vascular homeostasis. Here, we show that metabolism of tryptophan to kynurenine by indoleamine 2,3-dioxygenase (IDO) expressed in endothelial cells contributes to arterial vessel relaxation and the control of blood pressure. Infection of mice with malarial parasites (Plasmodium berghei), and experimental induction of endotoxemia, caused endothelial expression of IDO, resulting in decreased plasma tryptophan, increased kynurenine, and hypotension. Pharmacological inhibition of IDO increased blood pressure in systemically inflamed mice, but not in mice deficient for IDO or interferon-γ, which is required for IDO induction. Tryptophan dilated pre-constricted porcine coronary arteries only if active IDO and an intact endothelium were both present. Kynurenine dose-dependently decreased blood pressure in spontaneously hypertensive rats, inhibited contraction of arteries, and relaxed pre-constricted rings endothelium-independently. Arterial relaxation by kynurenine was mediated by activation of the adenylate and soluble guanylate cyclase pathways.
doi:10.1038/nm.2092
PMCID: PMC3556275  PMID: 20190767
11.  Suppression of CB1 Cannabinoid Receptor by Lentivirus Mediated Small Interfering RNA Ameliorates Hepatic Fibrosis in Rats 
PLoS ONE  2012;7(12):e50850.
It is recognized that endogenous cannabinoids, which signal through CB1 receptors in hepatic stellate cells (HSCs), exert a profibrotic effect on chronic liver diseases. In this study, we suppressed CB1 expression by lentivirus mediated small interfering RNA (CB1-RNAi-LV) and investigated its effect on hepatic fibrosis in vitro and in vivo. Our results demonstrated that CB1-RNAi-LV significantly inhibited CB1 expression, and suppressed proliferation and extracellular matrix production in HSCs. Furthermore, CB1-RNAi-LV ameliorated dimethylnitrosamine induced hepatic fibrosis markedly, which was associated with the decreased expression of mesenchymal cell markers smooth muscle α-actin, vimentin and snail, and the increased expression of epithelial cell marker E-cadherin. The mechanism lies on the blockage of Smad signaling transduction induced by transforming growth factor β1 and its receptor TGF-β RII. Our study firstly provides the evidence that CB1-RNAi-LV might ameliorate hepatic fibrosis through the reversal of epithelial-to-mesenchymal transition (EMT), while the CB1 antagonists AM251 had no effect on epithelial-mesenchymal transitions of HSCs. This suggests that CB1 is implicated in hepatic fibrosis and selective suppression of CB1 by small interfering RNA may present a powerful tool for hepatic fibrosis treatment.
doi:10.1371/journal.pone.0050850
PMCID: PMC3520929  PMID: 23251393
12.  The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells 
Tissue Engineering. Part A  2011;17(19-20):2497-2509.
The search for novel sources of stem cells other than bone marrow mesenchymal stem cells (MSCs) for bone regeneration and repair has been a critical endeavor. We previously established an effective protocol to homogeneously purify human pericytes from multiple fetal and adult tissues, including adipose, bone marrow, skeletal muscle, and pancreas, and identified pericytes as a primitive origin of human MSCs. In the present study, we further characterized the osteogenic potential of purified human pericytes combined with a novel osteoinductive growth factor, Nell-1. Purified pericytes grown on either standard culture ware or human cancellous bone chip (hCBC) scaffolds exhibited robust osteogenic differentiation in vitro. Using a nude mouse muscle pouch model, pericytes formed significant new bone in vivo as compared to scaffold alone (hCBC). Moreover, Nell-1 significantly increased pericyte osteogenic differentiation, both in vitro and in vivo. Interestingly, Nell-1 significantly induced pericyte proliferation and was observed to have pro-angiogenic effects, both in vitro and in vivo. These studies suggest that pericytes are a potential new cell source for future efforts in skeletal regenerative medicine, and that Nell-1 is a candidate growth factor able to induce pericyte osteogenic differentiation.
doi:10.1089/ten.tea.2010.0705
PMCID: PMC3179623  PMID: 21615216
13.  Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress 
BMC Plant Biology  2012;12:174.
Background
Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles.
Results
We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery.
Conclusion
The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs, antioxidant enzymes (i.e., ascorbate peroxidase), and galactinol synthase may be important to thermotolerance of grape. HSF30 may be a key regulator for heat stress and recovery, while HSF7 and HSF1 may only be specific to recovery. The identification of heat stress or recovery responsive genes in this study provides novel insights into the molecular basis for heat tolerance in grape leaves.
doi:10.1186/1471-2229-12-174
PMCID: PMC3497578  PMID: 23016701
14.  Oxymatrine liposome attenuates hepatic fibrosis via targeting hepatic stellate cells 
AIM: To investigate the potential mechanism of Arg-Gly-Asp (RGD) peptide-labeled liposome loading oxymatrine (OM) therapy in CCl4-induced hepatic fibrosis in rats.
METHODS: We constructed a rat model of CCl4-induced hepatic fibrosis and treated the rats with different formulations of OM. To evaluate the antifibrotic effect of OM, we detected levels of alkaline phosphatase, hepatic histopathology (hematoxylin and eosin stain and Masson staining) and fibrosis-related gene expression of matrix metallopeptidase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-1 as well as type I procollagen via quantitative real-time polymerase chain reaction. To detect cell viability and apoptosis of hepatic stellate cells (HSCs), we performed 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay and flow cytometry. To reinforce the combination of oxymatrine with HSCs, we constructed fluorescein-isothiocyanate-conjugated Arg-Gly-Asp peptide-labeled liposomes loading OM, and its targeting of HSCs was examined by fluorescent microscopy.
RESULTS: OM attenuated CCl4-induced hepatic fibrosis, as defined by reducing serum alkaline phosphatase (344.47 ± 27.52 U/L vs 550.69 ± 43.78 U/L, P < 0.05), attenuating liver injury and improving collagen deposits (2.36% ± 0.09% vs 7.70% ± 0.60%, P < 0.05) and downregulating fibrosis-related gene expression, that is, MMP-2, TIMP-1 and type I procollagen (P < 0.05). OM inhibited cell viability and induced apoptosis of HSCs in vitro. RGD promoted OM targeting of HSCs and enhanced the therapeutic effect of OM in terms of serum alkaline phosphatase (272.51 ± 19.55 U/L vs 344.47 ± 27.52 U/L, P < 0.05), liver injury, collagen deposits (0.26% ± 0.09% vs 2.36% ± 0.09%, P < 0.05) and downregulating fibrosis-related gene expression, that is, MMP-2, TIMP-1 and type I procollagen (P < 0.05). Moreover, in vitro assay demonstrated that RGD enhanced the effect of OM on HSC viability and apoptosis.
CONCLUSION: OM attenuated hepatic fibrosis by inhibiting viability and inducing apoptosis of HSCs. The RGD-labeled formulation enhanced the targeting efficiency for HSCs and the therapeutic effect.
doi:10.3748/wjg.v18.i31.4199
PMCID: PMC3422802  PMID: 22919254
Oxymatrine; Arg-Gly-Asp peptide; Hepatic stellate cell; Hepatic fibrosis; Target therapy
15.  Fabrication of a form- and size-variable microcellular-polymer-stabilized metal nanocomposite using supercritical foaming and impregnation for catalytic hydrogenation 
Nanoscale Research Letters  2012;7(1):283.
This article presents the fabrication of size-controllable and shape-flexible microcellular high-density polyethylene-stabilized palladium nanoparticles (Pd/m-HDPE) using supercritical foaming, followed by supercritical impregnation. These nanomaterials are investigated for use as heterogeneous hydrogenation catalysts of biphenyls in supercritical carbon dioxide with no significant surface and inner mass transfer resistance. The morphology of the Pd/m-HDPE is examined using scanning electron microscopy images of the pores inside Pd/m-HDPE catalysts and transmission electron microscopy images of the Pd particles confined in an HDPE structure. This nanocomposite simplifies industrial design and operation. These Pd/m-HDPE catalysts can be recycled easily and reused without complex recovery and cleaning procedures.
doi:10.1186/1556-276X-7-283
PMCID: PMC3422202  PMID: 22651135
Nanoparticle; Heterogeneous catalysis; Supercritical fluids; Foaming; Impregnation
16.  Magnifying endoscopy in upper gastroenterology for assessing lesions before completing endoscopic removal 
Any prognosis of gastrointestinal (GI) cancer is closely related to the stage of the disease at diagnosis. Endoscopic submucosal dissection (ESD) and en bloc endoscopic mucosal resection (EMR) have been performed as curative treatments for many early-stage GI lesions in recent years. The technologies have been widely accepted in many Asian countries because they are minimally invasive and supply thorough histopathologic evaluation of the specimens. However, before engaging in endoscopic therapy, an accurate diagnosis is a precondition to effecting the complete cure of the underlying malignancy or carcinoma in situ. For the past few years, many new types of endoscopic techniques, including magnifying endoscopy with narrow-band imaging (ME-NBI), have emerged in many countries because these methods provide a strong indication of early lesions and are very useful in determining treatment options before ESD or EMR. However, to date, there is no comparable classification equivalent to “Kudo’s Pit Pattern Classification in the colon”, for the upper GI, there is still no clear internationally accepted classification system of magnifying endoscopy. Therefore, in order to help unify some viewpoints, here we will review the defining optical imaging characteristics and the current representative classifications of microvascular and microsurface patterns in the upper GI tract under ME-NBI, describe the accurate relationship between them and the pathological diagnosis, and their clinical applications prior to ESD or en bloc EMR. We will also discuss assessing the differentiation and depth of invasion, defying the lateral spread of involvement and targeting biopsy in real time.
doi:10.3748/wjg.v18.i12.1295
PMCID: PMC3319956  PMID: 22493543
Magnifying endoscopy with narrow-band imaging; Upper gastroenterology; Assessment; Endoscopic submucosal dissection; Endoscopic mucosal resection
17.  Rapid Probing of Biological Surfaces with a Sparse-Matrix Peptide Library 
PLoS ONE  2011;6(8):e23551.
Finding unique peptides to target specific biological surfaces is crucial to basic research and technology development, though methods based on biological arrays or large libraries limit the speed and ease with which these necessary compounds can be found. We reasoned that because biological surfaces, such as cell surfaces, mineralized tissues, and various extracellular matrices have unique molecular compositions, they present unique physicochemical signatures to the surrounding medium which could be probed by peptides with appropriately corresponding physicochemical properties. To test this hypothesis, a naïve pilot library of 36 peptides, varying in their hydrophobicity and charge, was arranged in a two-dimensional matrix and screened against various biological surfaces. While the number of peptides in the matrix library was very small, we obtained “hits” against all biological surfaces probed. Sequence refinement of the “hits” led to peptides with markedly higher specificity and binding activity against screened biological surfaces. Genetic studies revealed that peptide binding to bacteria was mediated, at least in some cases, by specific cell-surface molecules, while examination of human tooth sections showed that this method can be used to derive peptides with highly specific binding to human tissue.
doi:10.1371/journal.pone.0023551
PMCID: PMC3156232  PMID: 21858167
18.  1,3-Bis{[5-(pyridin-2-yl)-1,3,4-oxadiazol-2-yl]sulfan­yl}propan-2-one 
In the distorted W-shaped mol­ecule of the title compound, C17H12N6O3S2, a twofold axis passes through the carbonyl group. The mol­ecules stack in the crystal through π–π inter­actions [centroid—centroid distance = 3.883 Å] and weak C—H⋯N hydrogen-bonding inter­actions, forming a three-dimensional architecture.
doi:10.1107/S1600536811001140
PMCID: PMC3051430  PMID: 21523084
19.  trans-Diaqua­bis­[5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ido-κ2 N 3,O 4]zinc(II) 
In the title complex, [Zn(C10H6N3O4)2(H2O)2], the ZnII atom is located on a twofold rotation axis and is coordinated by two trans-positioned N,O-bidentate and zwitterionic 5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ide (H2PIDC−) ligands and two water mol­ecules, defining a distorted octa­hedral environment. The complete solid-state structure can be described as a three-dimensional supra­molecular framework, stabilized by extensive hydrogen-bonding inter­actions involving the coordinated water mol­ecules, uncoordin­ated imidazole N atom, protonated pyridine N and carboxyl­ate O atoms of the H2PIDC− ligands.
doi:10.1107/S1600536810031855
PMCID: PMC3007913  PMID: 21588565
20.  Urinary Bladder Smooth Muscle Engineered from Adipose Stem Cells and a Three Dimensional Synthetic Composite 
Biomaterials  2009;30(19):3259-3270.
Human adipose stem cells were cultured in smooth muscle inductive media and seeded into synthetic bladder composites to tissue engineer bladder smooth muscle. 85:15 poly-lactic-glycolic acid bladder dome composites were cast using an electropulled microfiber luminal surface combined with an outer porous sponge. Cell seeded bladders expressed smooth muscle actin, myosin heavy chain, calponinin, and caldesmon via RT-PCR and immunoflourescence. Nude rats (n=45) underwent removal of half their bladder and repair using: (i) augmentation with the adipose stem cell seeded composites, (ii) augmentation with a matched acellular composite, or (iii) suture closure. Animals were followed for 12 weeks post-implantation and bladders were explanted serially. Results showed that bladder capacity and compliance were maintained in the cell seeded group throughout the 12 weeks, but deteriorated in the acellular scaffold group sequentially with time. Control animals repaired with sutures regained their baseline bladder capacities by week 12, demonstrating a long term limitation of this model. Histological analysis of explanted materials demonstrated viable adipose stem cells and increasing smooth muscle mass in the cell seeded scaffolds with time. Tissue bath stimulation demonstrated smooth muscle contraction of the seeded implants but not the acellular implants after 12 weeks in vivo. Our study demonstrates the feasibility and short term physical properties of bladder tissue engineered from adipose stem cells.
doi:10.1016/j.biomaterials.2009.02.035
PMCID: PMC2744495  PMID: 19345408
stem cell; smooth muscle cell; urinary tract; organ culture; bladder tissue engineering
21.  Reactive oxygen species enhance insulin sensitivity 
Cell metabolism  2009;10(4):260-272.
SUMMARY
Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high fat diet-induced insulin resistance. The increased insulin sensitivity in Gpx1−/− mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the anti-oxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo.
doi:10.1016/j.cmet.2009.08.009
PMCID: PMC2892288  PMID: 19808019
22.  Specific Binding and Mineralization of Calcified Surfaces by Small Peptides 
Calcified Tissue International  2009;86(1):58-66.
Several small (<25aa) peptides have been designed based on the sequence of the dentin phosphoprotein, one of the major noncollagenous proteins thought to be involved in the mineralization of the dentin extracellular matrix during tooth development. These peptides, consisting of multiple repeats of the tripeptide aspartate-serine-serine (DSS), bind with high affinity to calcium phosphate compounds and, when immobilized, can recruit calcium phosphate to peptide-derivatized polystyrene beads or to demineralized human dentin surfaces. The affinity of binding to hydroxyapatite surfaces increases with the number of (DSS)n repeats, and though similar repeated sequences—(NTT)n, (DTT)n, (ETT)n, (NSS)n, (ESS)n, (DAA)n, (ASS)n, and (NAA)n—also showed HA binding activity, it was generally not at the same level as the natural sequence. Binding of the (DSS)n peptides to sectioned human teeth was shown to be tissue-specific, with high levels of binding to the mantle dentin, lower levels of binding to the circumpulpal dentin, and little or no binding to healthy enamel. Phosphorylation of the serines of these peptides was found to affect the avidity, but not the affinity, of binding. The potential utility of these peptides in the detection of carious lesions, the delivery of therapeutic compounds to mineralized tissues, and the modulation of remineralization is discussed.
doi:10.1007/s00223-009-9312-0
PMCID: PMC2798077  PMID: 19949943
Dentin phosphoprotein; Peptide; Mineralization
24.  trans-Diaqua­bis[5-carb­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4]iron(II) 
In the title complex, [Fe(C10H6N3O4)2(H2O)2], the FeII atom is located on an inversion centre and is trans-coordinated by two N,O-bidentate 5-carb­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carb­oxy­l­ate ligands and two water mol­ecules, defining a distorted octa­hedral environment. A two-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds extending parallel to (110) helps to stabilize the crystal packing.
doi:10.1107/S1600536809027457
PMCID: PMC2977312  PMID: 21583390
25.  trans-Diaqua­bis[5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ido-κ2 N 3,O 4]iron(II) 
In the title complex, [Fe(C10H6N3O4)2(H2O)2], the FeII atom is located on a twofold rotation axis and is coordinated by two trans-positioned N,O-bidentate and zwitterionic 5-carboxy-2-(pyridinium-4-yl)-1H-imidazol-1-ide-4-carboxylate H2PIDC− ligands and two water mol­ecules in a distorted environment. In the crystal packing, a three-dimensional network is constructed via hydrogen-bonding involving the water mol­ecules, uncoordinated imidazole N atom, protonated pyridine N and carboxyl­ate O atoms.
doi:10.1107/S160053680902337X
PMCID: PMC2969200  PMID: 21582742

Results 1-25 (27)