Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Biofilm shows spatially stratified metabolic responses to contaminant exposure 
Environmental microbiology  2012;14(11):2901-2910.
Biofilms are core to a range of biological processes, including the bioremediation of environmental contaminants. Within a biofilm population, cells with diverse genotypes and phenotypes coexist, suggesting that distinct metabolic pathways may be expressed based on the local environmental conditions in a biofilm. However, metabolic responses to local environmental conditions in a metabolically active biofilm interacting with environmental contaminants have never been quantitatively elucidated. In this study, we monitored the spatiotemporal metabolic responses of metabolically active Shewanella oneidensis MR-1 biofilms to U(VI) (uranyl, UO22+) and Cr(VI) (chromate, CrO42−) using noninvasive nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS) approaches to obtain insights into adaptation in biofilms during biofilm-contaminant interactions. While overall biomass distribution was not significantly altered upon exposure to U(VI) or Cr(VI), MRI and spatial mapping of the diffusion revealed localized changes in the water diffusion coefficients in the biofilms, suggesting significant contaminant-induced changes in structural or hydrodynamic properties during bioremediation. Finally, we quantitatively demonstrated that the metabolic responses of biofilms to contaminant exposure are spatially stratified, implying that adaptation in biofilms is custom-developed based on local microenvironments.
PMCID: PMC3480979  PMID: 22925136
2.  Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques 
PLoS ONE  2012;7(3):e32219.
Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized in vitro, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for in vitro temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species.
Methodology/Principal Findings
Supragingival plaque samples from caries-free children incubated with 13C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by Lactobacillus and Propionibacterium species, both of which have been previously found within carious lesions from children.
Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that are active at low pH can lead to a better understanding of oral caries onset and generate appropriate targets for preventative measures in the early stages.
PMCID: PMC3293899  PMID: 22403637
3.  In situ effective diffusion coefficient profiles in live biofilms using pulsed-field gradient nuclear magnetic resonance 
Biotechnology and bioengineering  2010;106(6):928-937.
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time-dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1 biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.
PMCID: PMC2898744  PMID: 20589671
biofilm; diffusion coefficient; diffusivity; in situ; mass transfer; magnetic resonance imaging; nuclear magnetic resonance; pulsed-field gradients; Shewanella oneidensis

Results 1-3 (3)