Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Co-modulated behavior and effects of differentially expressed miRNA in colorectal cancer 
BMC Genomics  2013;14(Suppl 5):S12.
MicroRNAs (miRNAs) are short noncoding RNAs (approximately 22 nucleotides in length) that play important roles in colorectal cancer (CRC) progression through silencing gene expression. Numerous dysregulated miRNAs simultaneously participate in the process of colon cancer development. However, the detailed mechanisms and biological functions of co-expressed miRNA in colorectal carcinogenesis have yet to be fully elucidated.
The objective of this study was to identify the dysfunctional miRNAs and their target mRNAs using a wet-lab experimental and dry-lab bioinformatics approach. The differentially expressed miRNA candidates were identified from 2 miRNA profiles, and were confirmed in CRC clinical samples using reported target genes of dysfunctional miRNAs to perform functional pathway enrichment analysis. Potential target gene candidates were predicted by an in silico search, and their expression levels between normal and colorectal tumor tissues were further analyzed using real-time polymerase chain reaction (RT-PCR).
We identified 5 miRNAs (miR-18a, miR-31, miR-96, miR-182, and miR-224) and 10 miRNAs (miR-1, miR-9, miR-10b, miR-133a, miR-143, miR-137, miR-147b, miR-196a/b, and miR-342) that were significantly upregulated and downregulated in colon tumors, respectively. Bioinformatics analysis showed that the known targets of these dysregulated miRNAs simultaneously participated in epithelial-to-mesenchymal transition (EMT), cell growth, cell adhesion, and cell cycles. In addition, we identified that several pivotal target gene candidates may be comodulated by dysfunctional miRNAs during colon cancer progression. Finally, 7 candidates were proven to be differentially expressed, and had an anti-correlationship with dysregulated miRNA in 48 CRC samples.
Fifteen dysfunctional miRNAs were engaged in metastasis-associated pathways through comodulating 7 target genes, which were identified by using a multi-step approach. The roles of these candidate genes are worth further exploration in the progression of colon cancer, and could potentially be targets in future therapy.
PMCID: PMC3852113  PMID: 24564330
microRNA; colorectal cancer; pathway enrichment analysis
2.  Passive Immunoprotection Targeting a Secreted CAMP Factor of Propionibacterium acnes as a Novel Immunotherapeutic for Acne Vulgaris 
Vaccine  2011;29(17):3230-3238.
Propionibacterium acnes (P. acnes) bacteria play a key role in the pathogenesis of acne vulgaris. Although our previous studies have demonstrated that vaccines targeting a surface sialidase or bacterial particles exhibit a preventive effect against P. acnes, the lack of therapeutic activities and incapability of neutralizing secretory virulence factors motivate us to generate novel immunotherapeutics. In this study, we develop an immunotherapeutic antibody to secretory Christie-Atkins-Munch-Peterson (CAMP) factor of P. acnes. Via agroinfiltration, P. acnes CAMP factor was encapsulated into the leaves of radishes. ICR mice intranasally immunized with whole leaves expressing CAMP factor successfully produced neutralizing antibodies that efficiently attenuated P. acnes-induced ear swelling and production of macrophage-inflammatory protein-2. Passive neutralization of CAMP factor enhanced immunity to eradicate P. acnes at the infection site without influencing bacterial growth elsewhere. We propose that CAMP factor is a novel therapeutic target for the treatment of various P. acnes-associated diseases and highlight the concept of neutralizing P. acnes virulence without disturbing the bacterial commensalism in human micorbiome.
PMCID: PMC3388602  PMID: 21354482
Acne vulgaris; Agroinfiltration; Passive immunization; Propionibacterium acnes; Radish leaves
3.  Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing 
Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.
PMCID: PMC3269702  PMID: 22312268
gene silencing; nanoparticles; PLGA; PLL; siRNA delivery; GFP
4.  The essentiality of alpha-2-macroglobulin in human salivary innate immunity against new H1N1 swine origin influenza A virus 
Proteomics  2010;10(12):2396-2401.
A novel strain of influenza A H1N1 emerged in the spring of 2009 and has spread rapidly throughout the world. Although vaccines have recently been developed that are expected to be protective, their availability was delayed until well into the influenza season. While anti-influenza drugs such as neuraminidase inhibitors can be effective, resistance to these drugs has already been reported. Although human saliva was known to inhibit viral infection and may thus prevent viral transmission, the components responsible for this activity on influenza virus, in particular, influenza A swine origin influenza A virus (S-OIV), have not yet been defined. By using a proteomics approach in conjunction with beads that bind alpha 2,6-sialylated glycoprotein, we determined that an alpha-2-macroglobulin (A2M) and a A2M-like protein are essential components in salivary innate immunity against hemagglutination mediated by a clinical isolate of S-OIV [San Diego/01/09 (SD/H1N1-S-OIV)]. A model of an A2M-based “double-edged sword” on competition of alpha 2,6-sialylated glycoprotein receptors and inactivation of host proteases is proposed. We emphasize that endogenous A2M in human innate immunity functions as a natural inhibitor against S-OIV.
PMCID: PMC2890046  PMID: 20391540
Proteomics; alpha 2,6-sialylated glycoproteins; alpha-2-macroglobulin; Salivary innate immunity; H1N1 swine origin influenza A virus
5.  Vaccination targeting surface FomA of Fusobacterium nucleatum against bacterial co-aggregation: implication for treatment of periodontal infection and halitosis 
Vaccine  2010;28(19):3496-3505.
The mechanical therapy with multiple doses of antibiotics is one of modalities for treatment of periodontal diseases. However, treatments using multiple doses of antibiotics carry risks of generating resistant strains and misbalancing the resident body flora. We present an approach via immunization targeting an outer membrane protein FomA of Fusobacterium nucleatum, a central bridging organism in the architecture of oral biofilms. Neutralization of FomA considerably abrogated the enhancement of bacterial co-aggregation, biofilms and production of volatile sulfur compounds mediated by an interspecies interaction of F. nucleatum with Porphyromonas gingivalis (P. gingivalis). Vaccination targeting FomA also conferred a protective effect against co-infection-induced gum inflammation. Here, we advance a novel infectious mechanism by which F. nucleatum co-opts P. gingivalis to exacerbate gum infections. FomA is highlighted as a potential target for development of new therapeutics against periodontal infection and halitosis in humans.
PMCID: PMC2855893  PMID: 20189489
Co-aggregation; Fusobacterium nucleatum; FomA; Porphyromonas gingivalis; Vaccine; Abscesses; Halitosis
6.  A novel vaccine targeting Fusobacterium nucleatum against abscesses and halitosis 
Vaccine  2009;27(10):1589-1595.
An abscess in a gum pocket, resulting from bacterial infection, is a common source of chronic halitosis. Although antibiotics are generally prescribed for abscesses, they require multiple treatments with risks of creating resistant bacterial strains. Here we develop a novel vaccine using ultraviolet-inactivated Fusobacterium nucleatum (F. nucleatum), a representative oral bacterium for halitosis. A gum pocket model, established by continuous inoculation of F. nucleatum, was employed to validate the vaccine potency. Mice immunized with inactivated F. nucleatum effectively minimized the progression of abscesses, measured by swollen tissues of gum pockets. Most notably, the immunized mice were capable of eliciting neutralizing antibodies against the production of volatile sulfur compounds of F. nucleatum. The novel vaccine inducing protective immunity provides an alternative option to conventional antibiotic treatments for chronic halitosis associated with abscesses.
PMCID: PMC3057132  PMID: 19162109
Vaccine; F. nucleatum; Abscesses; Halitosis
7.  Vaccines and Photodynamic Therapies for Oral Microbial-Related Diseases 
Current drug metabolism  2009;10(1):90-94.
The mouth is a favorable habitat for a great variety of bacteria. Microbial composition of dental plaque is the usual cause of various oral diseases in humans, including dental caries, periodontal disease and halitosis. In general, oral antibacterial agents such as antibiotics are commonly used to treat oral bacterial infection. Traditional periodontal surgery is painful and time-consuming. In addition, bacterial resistance and toxicity of antibiotics have become a global pandemic and unavoidable. Recently, vaccines for dental caries and periodontal disease have been developed and applied. Moreover, the use of photodynamic therapy has become an alternative to antibiotic drugs. The purpose of this article is to highlight the advantages of vaccine therapy and photodynamic therapy for oral microbial-related diseases compared to treatments with antimicrobial agents and traditional periodontal surgery.
PMCID: PMC2776031  PMID: 19149517
Antimicrobial agent treatment; vaccine therapy; traditional periodontal surgery; photodynamic therapy

Results 1-7 (7)