Search tips
Search criteria

Results 1-25 (29)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
author:("kretz, Jens")
1.  Probing Oral Microbial Functionality – Expression of spxB in Plaque Samples 
PLoS ONE  2014;9(1):e86685.
The Human Oral Microbiome Database (HOMD) provides an extensive collection of genome sequences from oral bacteria. The sequence information is a static snapshot of the microbial potential of the so far sequenced species. A major challenge is to connect the microbial potential encoded in the metagenome to an actual function in the in vivo oral biofilm. In the present study we took a reductionist approach and identified a considerably conserved metabolic gene, spxB to be encoded by a majority of oral streptococci using the HOMD metagenome information. spxB encodes the pyruvate oxidase responsible for the production of growth inhibiting amounts of hydrogen peroxide (H2O2) and has previously been shown as important in the interspecies competition in the oral biofilm. Here we demonstrate a strong correlation of H2O2 production and the presence of the spxB gene in dental plaque. Using Real-Time RT PCR we show that spxB is expressed in freshly isolated human plaque samples from several donors and that the expression is relative constant when followed over time in one individual. This is the first demonstration of an oral community encoded gene expressed in vivo suggesting a functional role of spxB in oral biofilm physiology. This also demonstrates a possible strategy to connect the microbial potential of the metagenome to its functionality in future studies by identifying similar highly conserved genes in the oral microbial community.
PMCID: PMC3906080  PMID: 24489768
2.  The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome 
The oral microbiome is composed of a multitude of different species of bacteria, each capable of occupying one or more of the many different niches found within the human oral cavity. This community exhibits many types of complex interactions which enable it to colonize and rapidly respond to changes in the environment in which they live. One of these interactions is the transfer, or acquisition, of DNA within this environment, either from co-resident bacterial species or from exogenous sources. Horizontal gene transfer in the oral cavity gives some of the resident bacteria the opportunity to sample a truly enormous metagenome affording them considerable adaptive potential which may be key to survival in such a varying environment. In this review the underlying mechanisms of HGT are discussed in relation to the oral microbiome with numerous examples described where the direct acquisition of exogenous DNA has contributed to the fitness of the bacterial host within the human oral cavity.
PMCID: PMC4157583  PMID: 25250243
horizontal gene transfer; mobile genetic elements; conjugation; transformation; hydrogen peroxide; extracellular DNA; oral cavity; biofilm
3.  Multiple Roles of RNase Y in Streptococcus pyogenes mRNA Processing and Degradation 
Journal of Bacteriology  2013;195(11):2585-2594.
Control over mRNA stability is an essential part of gene regulation that involves both endo- and exoribonucleases. RNase Y is a recently identified endoribonuclease in Gram-positive bacteria, and an RNase Y ortholog has been identified in Streptococcus pyogenes (group A streptococcus [GAS]). In this study, we used microarray and Northern blot analyses to determine the S. pyogenes mRNA half-life of the transcriptome and to understand the role of RNase Y in global mRNA degradation and processing. We demonstrated that S. pyogenes has an unusually high mRNA turnover rate, with median and mean half-lives of 0.88 min and 1.26 min, respectively. A mutation of the RNase Y-encoding gene (rny) led to a 2-fold increase in overall mRNA stability. RNase Y was also found to play a significant role in the mRNA processing of virulence-associated genes as well as in the rapid degradation of rnpB read-through transcripts. From these results, we conclude that RNase Y is a pleiotropic regulator required for mRNA stability, mRNA processing, and removal of read-through transcripts in S. pyogenes.
PMCID: PMC3676074  PMID: 23543715
4.  Characterization of Pyruvate Uptake in Escherichia coli K-12 
PLoS ONE  2013;8(6):e67125.
The monocarboxylate pyruvate is an important metabolite and can serve as sole carbon source for Escherichia coli. Although specific pyruvate transporters have been identified in two bacterial species, pyruvate transport is not well understood in E. coli. In the present study, pyruvate transport was investigated under different growth conditions. The transport of pyruvate shows specific activities depending on the growth substrate used as sole carbon source, suggesting the existence of at least two systems for pyruvate uptake: i) one inducible system and probably highly specific for pyruvate and ii) one system active under non-induced conditions. Using the toxic pyruvate analog 3-fluoropyruvate, a mutant was isolated unable to grow on and transport pyruvate. Further investigation revealed that a revertant selected for growth on pyruvate regained the inducible pyruvate transport activity. Characterization of pyruvate excretion showed that the pyruvate transport negative mutant accumulated pyruvate in the growth medium suggesting an additional transport system for pyruvate excretion. The here presented data give valuable insight into the pyruvate metabolism and transport of E. coli suggesting the presence of at least two uptake systems and one excretion system to balance the intracellular level of pyruvate.
PMCID: PMC3688616  PMID: 23818977
5.  Role of LytF and AtlS in eDNA Release by Streptococcus gordonii 
PLoS ONE  2013;8(4):e62339.
Extracellular DNA (eDNA) is an important component of the biofilm matrix produced by many bacteria. In general, the release of eDNA is associated with the activity of muralytic enzymes leading to obvious cell lysis. In the Gram-positive oral commensal Streptococcus gordonii, eDNA release is dependent on pyruvate oxidase generated hydrogen peroxide (H2O2). Addition of H2O2 to cells grown under conditions non-permissive for H2O2 production causes eDNA release. Furthermore, eDNA release is maximal under aerobic growth conditions known to induce pyruvate oxidase gene expression and H2O2 production. Obvious cell lysis, however, does not occur. Two enzymes have been recently associated with eDNA release in S. gordonii. The autolysin AtlS and the competence regulated murein hydrolase LytF. In the present report, we investigated the role of both proteins in the H2O2 dependent eDNA release process. Single and double mutants in the respective genes for LytF and AtlS released less eDNA under normal growth conditions, but the AtlS mutant was still inducible for eDNA release by external H2O2. Moreover, we showed that the AtlS mutation interfered with the ability of S. gordonii to produce eDNA release inducing amounts of H2O2. Our data support a role of LytF in the H2O2 eDNA dependent release of S. gordonii as part of the competence stress pathway responding to oxidative stress.
PMCID: PMC3634736  PMID: 23638042
6.  CcpA Regulates Biofilm Formation and Competence in Streptococcus gordonii 
Molecular Oral Microbiology  2011;27(2):83-94.
Streptococcus gordonii is an important member of the oral biofilm community. As oral commensal streptococci, S. gordonii is considered beneficial in promoting biofilm homeostasis. CcpA is known as central regulator of carbon catabolite repression in Gram-positive bacteria and is also involved in the control of virulence gene expression. To further establish the role of CcpA as central regulator in S. gordonii, the effect of CcpA on biofilm formation and natural competence of S. gordonii was investigated. These phenotypic traits have been suggested to be important to oral streptococci in coping with environmental stress. Here we demonstrate that a CcpA mutant was severely impaired in its biofilm forming ability, showed a defect in extracellular polysaccharide production and reduced competence. The data suggest that CcpA is involved in the regulation of biofilm formation and competence development in S. gordonii.
PMCID: PMC3296961  PMID: 22394467
7.  Evaluation of bacteria-induced enamel demineralization using optical profilometry 
Streptococcus mutans is considered a major causative of tooth decay due to it’s ability to rapidly metabolize carbohydrates such as sucrose. One prominent excreted end product of sucrose metabolism is lactic acid. Lactic acid causes a decrease in the pH of the oral environment with subsequent demineralization of the tooth enamel. Biologically relevant bacteria-induced enamel demineralization was studied.
Optical profiling was used to measure tooth enamel decay with vertical resolution under one nanometer and lateral features with optical resolution as a result of S. mutans biofilm exposure. Comparison measurements were made using AFM.
After 72 hr of biofilm exposure the enamel displayed an 8-fold increase in the observed roughness average, (Ra), as calculated over the entire measured array. Similarly, the average root mean square (RMS) roughness, RRMS, of the enamel before and after biofilm exposure for 3 days displayed a 7-fold increase. Further, the direct effect of chemically induced enamel demineralization using biologically relevant organic acids was shown. Optical profiles of the enamel surface after addition of a 30% lactic acid solution showed a significant alteration in the surface topography with a corresponding increase in respective surface roughness statistics. Similar measurements with 10% citric acid over seconds and minutes give insight into the demineralization process by providing quantitative measures for erosion rates: comparing surface height and roughness as metrics.
The strengths of optical profilometry as an analytical tool for understanding and analyzing biologically relevant processes such as biofilm induced tooth enamel demineralization were demonstrated.
PMCID: PMC3454478  PMID: 19732947
enamel erosion; optical profilometry; biofilm; Streptococcus mutans; enamel demineralization; citric acid; lactic acid; AFM
8.  Oligomerization of the Response Regulator ComE from Streptococcus mutans Is Affected by Phosphorylation 
Journal of Bacteriology  2012;194(5):1127-1135.
We have previously characterized the interactions of the response regulator ComE from Streptococcus mutans and DNA binding sites through DNase I footprinting and electrophoretic mobility shift assay analysis. Since response regulator functions are often affected by their phosphorylation state, we investigated how phosphorylation affects the biochemical function of ComE. Unlike many response regulators, we found that the phosphorylation state of ComE does not likely play a role in DNA binding affinity but rather seems to induce the formation of an oligomeric form of the protein. The role of this oligomerization state for ComE function is discussed.
PMCID: PMC3294772  PMID: 22210762
9.  Dynamics of speB mRNA Transcripts in Streptococcus pyogenes 
Journal of Bacteriology  2012;194(6):1417-1426.
Streptococcus pyogenes (group A streptococcus [GAS]) is a human-specific pathogen that causes a variety of diseases ranging from superficial infections to life-threatening diseases. SpeB, a potent extracellular cysteine proteinase, plays an important role in the pathogenesis of GAS infections. Previous studies show that SpeB expression and activity are controlled at the transcriptional and posttranslational levels, though it had been unclear whether speB was also regulated at the posttranscriptional level. In this study, we examined the growth phase-dependent speB mRNA level and decay using quantitative reverse transcription-PCR (qRT-PCR) and Northern blot analyses. We observed that speB mRNA accumulated rapidly during exponential growth, which occurred concomitantly with an increase in speB mRNA stability. A closer observation revealed that the increased speB mRNA stability was mainly due to progressive acidification. Inactivation of RNase Y, a recently identified endoribonuclease, revealed a role in processing and degradation of speB mRNA. We conclude that the increased speB mRNA stability contributes to the rapid accumulation of speB transcript during growth.
PMCID: PMC3294869  PMID: 22267517
10.  The Role of Hydrogen Peroxide in Environmental Adaptation of Oral Microbial Communities 
Oral streptococci are able to produce growth-inhibiting amounts of hydrogen peroxide (H2O2) as byproduct of aerobic metabolism. Several recent studies showed that the produced H2O2 is not a simple byproduct of metabolism but functions in several aspects of oral bacterial biofilm ecology. First, the release of DNA from cells is closely associated to the production of H2O2 in Streptococcus sanguinis and Streptococcus gordonii. Extracellular DNA is crucial for biofilm development and stabilization and can also serve as source for horizontal gene transfer between oral streptococci. Second, due to the growth inhibiting nature of H2O2, H2O2 compatible species associate with the producers. H2O2 production therefore might help in structuring the initial biofilm development. On the other hand, the oral environment harbors salivary peroxidases that are potent in H2O2 scavenging. Therefore, the effects of biofilm intrinsic H2O2 production might be locally confined. However, taking into account that 80% of initial oral biofilm constituents are streptococci, the influence of H2O2 on biofilm development and environmental adaptation might be under appreciated in current research.
PMCID: PMC3405655  PMID: 22848782
11.  Hydrogen Peroxide-Dependent DNA Release and Transfer of Antibiotic Resistance Genes in Streptococcus gordonii ▿  
Journal of Bacteriology  2011;193(24):6912-6922.
Certain oral streptococci produce H2O2 under aerobic growth conditions to inhibit competing species like Streptococcus mutans. Additionally, H2O2 production causes the release of extracellular DNA (eDNA). eDNA can participate in several important functions: biofilm formation and cell-cell aggregation are supported by eDNA, while eDNA can serve as a nutrient and as an antimicrobial agent by chelating essential cations. eDNA contains DNA fragments of a size that has the potential to transfer genomic information. By using Streptococcus gordonii as a model organism for streptococcal H2O2 production, H2O2-dependent eDNA release was further investigated. Under defined growth conditions, the eDNA release process was shown to be entirely dependent on H2O2. Chromosomal DNA damage seems to be the intrinsic signal for the release, although only actively growing cells were proficient eDNA donors. Interestingly, the process of eDNA production was found to be coupled with the induction of the S. gordonii natural competence system. Consequently, the production of H2O2 triggered the transfer of antibiotic resistance genes. These results suggest that H2O2 is potentially much more than a simple toxic metabolic by-product; rather, its production could serve as an important environmental signal that facilitates species evolution by transfer of genetic information and an increase in the mutation rate.
PMCID: PMC3232836  PMID: 21984796
13.  Characterization of competence and biofilm development of a Streptocccus sanguinis endocarditis isolate 
Molecular oral microbiology  2011;26(2):117-126.
Streptococcus sanguinis is an oral commensal bacterium and endogenous pathogen in the blood, which generally is naturally competent to take up extracellular DNA. Regarded as a stress response, competence development enables S. sanguinis to acquire new genetic material. The sequenced reference strain SK36 encodes and expresses the genes required for competence (com) and uptake of DNA. Isolated from blood cultures of a confirmed case of infective endocarditis, strain 133–79 encodes all necessary com genes but is not transformable under conditions permissive for competence development in SK36. Using synthetic competence-stimulating peptides (sCSP) based on sequences of SK36 and 133–79 comC, both strains developed competence at similar frequencies in cross-transformation experiments. Furthermore, downstream response pathways are similar in strains SK36 and 133–79 since platelet aggregation and biofilm formation appeared unaffected by CSP. Collectively, the data indicate that strains SK36 and 133–79 respond to CSP similarly, strongly suggesting that endogenous production or release of CSP from 133–79 is impaired.
PMCID: PMC3075536  PMID: 21375702
14.  Counteractive Balancing of Transcriptome Expression Involving CodY and CovRS in Streptococcus pyogenes▿† 
Journal of Bacteriology  2011;193(16):4153-4165.
Streptococcus pyogenes (group A streptococcus [GAS]) responds to environmental changes in a manner that results in an adaptive regulation of the transcriptome. The objective of the present study was to understand how two global transcriptional regulators, CodY and CovRS, coordinate the transcriptional network in S. pyogenes. Results from expression microarray data and quantitative reverse transcription-PCR (qRT-PCR) showed that the global regulator CodY controls the expression of about 250 genes, or about 17% of the genome of strain NZ131. Additionally, the codY gene was shown to be negatively autoregulated, with its protein binding directly to the promoter region with a CodY binding site. In further studies, the influence of codY, covRS, and codY-covRS mutations on gene expression was analyzed in growth phase-dependent conditions using C medium, reported to mimic nutritional abundance and famine conditions similar to those found during host GAS infection. Additional biological experiments of several virulence phenotypes, including pilin production, biofilm formation, and NAD glycohydrolase activity, demonstrated the role that both CodY and CovRS play in their regulation. Correlation analysis of the overall data revealed that, in exponentially growing cells, CodY and CovRS act in opposite directions, with CodY stimulating and CovRS repressing a substantial fraction of the core genome, including many virulence factors. This is the first report of counteractive balancing of transcriptome expression by global transcription regulators and provides important insight into how GAS modulates gene expression by integrating important extracellular and intracellular information.
PMCID: PMC3147680  PMID: 21705595
15.  Environmental Influences on Competitive Hydrogen Peroxide Production in Streptococcus gordonii ▿  
Applied and Environmental Microbiology  2011;77(13):4318-4328.
Streptococcus gordonii is an important member of the oral biofilm. One of its phenotypic traits is the production of hydrogen peroxide (H2O2). H2O2 is an antimicrobial component produced by S. gordonii that is able to antagonize the growth of cariogenic Streptococcus mutans. Strategies that modulate H2O2 production in the oral cavity may be useful as a simple therapeutic mechanism to improve oral health, but little is known about the regulation of H2O2 production. The enzyme responsible for H2O2 production is pyruvate oxidase, encoded by spxB. The functional studies of spxB expression and SpxB abundance presented in this report demonstrate a strong dependence on environmental oxygen tension and carbohydrate availability. Carbon catabolite repression (CCR) modulates spxB expression carbohydrate dependently. Catabolite control protein A (CcpA) represses spxB expression by direct binding to the spxB promoter, as shown by electrophoretic mobility shift assays (EMSA). Promoter mutation studies revealed the requirement of two catabolite-responsive elements (CRE) for CcpA-dependent spxB regulation, as evaluated by spxB expression and phenotypic H2O2 production assays. Thus, molecular mechanisms for the control of S. gordonii spxB expression are presented for the first time, demonstrating the possibility of manipulating H2O2 production for increased competitive fitness.
PMCID: PMC3127700  PMID: 21571883
16.  Characterization of DNA Binding Sites of the ComE Response Regulator from Streptococcus mutans▿† 
Journal of Bacteriology  2011;193(14):3642-3652.
In Streptococcus mutans, both competence and bacteriocin production are controlled by ComC and the ComED two-component signal transduction system. Recent studies of S. mutans suggested that purified ComE binds to two 11-bp direct repeats in the nlmC-comC promoter region, where ComE activates nlmC and represses comC. In this work, quantitative binding studies and DNase I footprinting analysis were performed to calculate the equilibrium dissociation constant and further characterize the binding site of ComE. We found that ComE protects sequences inclusive of both direct repeats, has an equilibrium dissociation constant in the nanomolar range, and binds to these two direct repeats cooperatively. Furthermore, similar direct repeats were found upstream of cslAB, comED, comX, ftf, vicRKX, gtfD, gtfB, gtfC, and gbpB. Quantitative binding studies were performed on each of these sequences and showed that only cslAB has a similar specificity and high affinity for ComE as that seen with the upstream region of comC. A mutational analysis of the binding sequences showed that ComE does not require both repeats to bind DNA with high affinity, suggesting that single site sequences in the genome may be targets for ComE-mediated regulation. Based on the mutational analysis and DNase I footprinting analysis, we propose a consensus ComE binding site, TCBTAAAYSGT.
PMCID: PMC3133340  PMID: 21602345
17.  Catabolite Control Protein A Controls Hydrogen Peroxide Production and Cell Death in Streptococcus sanguinis▿  
Journal of Bacteriology  2010;193(2):516-526.
Streptococcus sanguinis is a commensal oral bacterium producing hydrogen peroxide (H2O2) that is dependent on pyruvate oxidase (Spx) activity. In addition to its well-known role in bacterial antagonism during interspecies competition, H2O2 causes cell death in about 10% of the S. sanguinis population. As a consequence of H2O2-induced cell death, largely intact chromosomal DNA is released into the environment. This extracellular DNA (eDNA) contributes to the self-aggregation phenotype under aerobic conditions. To further investigate the regulation of spx gene expression, we assessed the role of catabolite control protein A (CcpA) in spx expression control. We report here that CcpA represses spx expression. An isogenic ΔccpA mutant showed elevated spx expression, increased Spx abundance, and H2O2 production, whereas the wild type did not respond with altered spx expression in the presence of glucose and other carbohydrates. Since H2O2 is directly involved in the release of eDNA and bacterial cell death, the presented data suggest that CcpA is a central control element in this important developmental process in S. sanguinis.
PMCID: PMC3019840  PMID: 21036992
18.  Role of Streptococcus mutans Eukaryotic-Type Serine/Threonine Protein Kinase in Interspecies Interactions with Streptococcus sanguinis 
Archives of oral biology  2010;55(5):385-390.
Interspecies interactions of oral streptococci involve the production and excretion of antimicrobial compounds to compete successfully during colonization. Bacteriocin production by Streptococcus mutans and hydrogen peroxide (H2O2) production by Streptococcus sanguinis have been demonstrated as crucial for the clinical relevant antagonism between both species. A potential target of H2O2 is the cell-envelop of S. mutans. In the present study, the role of cell-envelop associated eukaryotic serine/threonine protein kinase (STPK) in S. mutans during interspecies competition has been investigated.
Allelic replacements via homologous recombination of the STPK encoding gene with a kanamycin resistant determinant has been constructed. The mutant has been screened for the susceptibility towards cell-envelope stress. A previously developed spotting assay was used to simulate interspecies competition.
The STPK- mutant showed an increased susceptibility toward envelop-stress caused by H2O2 and was significantly more inhibited during interspecies competition assays.
S. mutans is able to sense antimicrobial compounds excreted by competing species and can potentially adjust the cell-envelop toward an increased resistance.
PMCID: PMC2879407  PMID: 20381010
19.  Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis 
The objective of this study was to characterize the oxygen dependent regulation of pyruvate oxidase (SpxB) gene expression and protein production in Streptococcus sanguinis (S. sanguinis). SpxB is responsible for the generation of growth-inhibiting amounts of hydrogen peroxide (H2O2) able to antagonize cariogenic Streptococcus mutans (S. mutans). Furthermore, the ecological consequence of H2O2 production was investigated in its self-inhibiting ability towards the producing strain. Expression of spxB was determined with quantitative Real-Time RT-PCR and a fluorescent expression reporter strain. Protein abundance was investigated with FLAG epitope engineered in frame on the C-terminal end of SpxB. Self inhibition was tested with an antagonism plate assay. The expression and protein abundance decreased in cells grown under anaerobic conditions. S. sanguinis was resistant against its own produced H2O2, while cariogenic S. mutans was inhibited in its growth. The results suggest that S. sanguinis produces H2O2 as antimicrobial substance to inhibit susceptible niche competing species like S. mutans during initial biofilm formation, when oxygen availability allows for spxB expression and Spx production.
PMCID: PMC3469881  PMID: 21485312
Streptococcus sanguinis; pyruvate oxidase; oxygen dependent
20.  Systematic Approach to Optimizing Specifically Targeted Antimicrobial Peptides against Streptococcus mutans▿  
Previously we reported a novel strategy of “targeted killing” through the design of narrow-spectrum molecules known as specifically targeted antimicrobial peptides (STAMPs) (R. Eckert et al., Antimicrob. Agents Chemother. 50:3651-3657, 2006; R. Eckert et al., Antimicrob. Agents Chemother. 50:1480-1488, 2006). Construction of these molecules requires the identification and the subsequent utilization of two conjoined yet functionally independent peptide components: the targeting and killing regions. In this study, we sought to design and synthesize a large number of STAMPs targeting Streptococcus mutans, the primary etiologic agent of human dental caries, in order to identify candidate peptides with increased killing speed and selectivity compared with their unmodified precursor antimicrobial peptides (AMPs). We hypothesized that a combinatorial approach, utilizing a set number of AMP, targeting, and linker regions, would be an effective method for the identification of STAMPs with the desired level of activity. STAMPs composed of the Sm6 S. mutans binding peptide and the PL-135 AMP displayed selectivity at MICs after incubation for 18 to 24 h. A STAMP where PL-135 was replaced by the B-33 killing domain exhibited both selectivity and rapid killing within 1 min of exposure and displayed activity against multispecies biofilms grown in the presence of saliva. These results suggest that potent and selective STAMP molecules can be designed and improved via a tunable “building-block” approach.
PMCID: PMC2863653  PMID: 20211885
21.  Influence of a model human defensive peroxidase system on oral streptococcal antagonism 
Microbiology  2009;155(Pt 11):3691-3700.
Streptococcus is a dominant genus in the human oral cavity, making up about 20 % of the more than 800 species of bacteria that have been identified, and about 80 % of the early biofilm colonizers. Oral streptococci include both health-compatible (e.g. Streptococcus gordonii and Streptococcus sanguinis) and pathogenic strains (e.g. the cariogenic Streptococcus mutans). Because the streptococci have similar metabolic requirements, they have developed defence strategies that lead to antagonism (also known as bacterial interference). S. mutans expresses bacteriocins that are cytotoxic toward S. gordonii and S. sanguinis, whereas S. gordonii and S. sanguinis differentially produce H2O2 (under aerobic growth conditions), which is relatively toxic toward S. mutans. Superimposed on the inter-bacterial combat are the effects of the host defensive mechanisms. We report here on the multifarious effects of bovine lactoperoxidase (bLPO) on the antagonism between S. gordonii and S. sanguinis versus S. mutans. Some of the effects are apparently counterproductive with respect to maintaining a health-compatible population of streptococci. For example, the bLPO system (comprised of bLPO+SCN−+H2O2) destroys H2O2, thereby abolishing the ability of S. gordonii and S. sanguinis to inhibit the growth of S. mutans. Furthermore, bLPO protein (with or without its substrate) inhibits bacterial growth in a biofilm assay, but sucrose negates the inhibitory effects of the bLPO protein, thereby facilitating adherence of S. mutans in lieu of S. gordonii and S. sanguinis. Our findings may be relevant to environmental pressures that select early supragingival colonizers.
PMCID: PMC2888128  PMID: 19684069
22.  Bacterial and Host Interactions of Oral Streptococci 
DNA and Cell Biology  2009;28(8):397-403.
The oral microbial flora comprises one of the most diverse human-associated biofilms. Its development is heavily influenced by oral streptococci, which are considered the main group of early colonizers. Their initial attachment determines the composition of later colonizers in the oral biofilm and impacts the health or disease status of the host. Thus, the role of streptococci in the development of oral diseases is best described in the context of bacterial ecology, which itself is further influenced by interactions with host epithelial cells, the immune system, and salivary components. The tractability of the oral biofilm makes it an excellent model system for studies of complex, biofilm-associated polymicrobial diseases. Using this system, numerous cooperative and antagonistic bacterial interactions have been demonstrated to occur within the community and with the host. In this review, several recent identified interactions are presented.
PMCID: PMC2903342  PMID: 19435424
23.  Characterization of Hydrogen Peroxide-Induced DNA Release by Streptococcus sanguinis and Streptococcus gordonii▿  
Journal of Bacteriology  2009;191(20):6281-6291.
Extracellular DNA (eDNA) is produced by several bacterial species and appears to contribute to biofilm development and cell-cell adhesion. We present data showing that the oral commensals Streptococcus sanguinis and Streptococcus gordonii release DNA in a process induced by pyruvate oxidase-dependent production of hydrogen peroxide (H2O2). Surprisingly, S. sanguinis and S. gordonii cell integrity appears unaffected by conditions that cause autolysis in other eDNA-producing bacteria. Exogenous H2O2 causes release of DNA from S. sanguinis and S. gordonii but does not result in obvious lysis of cells. Under DNA-releasing conditions, cell walls appear functionally intact and ribosomes are retained over time. During DNA release, intracellular RNA and ATP are not coreleased. Hence, the release mechanism appears to be highly specific for DNA. Release of DNA without detectable autolysis is suggested to be an adaptation to the competitive oral biofilm environment, where autolysis could create open spaces for competitors to invade. Since eDNA promotes cell-to-cell adhesion, release appears to support oral biofilm formation and facilitates exchange of genetic material among competent strains.
PMCID: PMC2753043  PMID: 19684131
24.  The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis 
Microbiology (Reading, England)  2009;155(Pt 1):165-173.
The putative two-component system BfrAB is involved in Streptococcus gordonii biofilm development. Here, we provide evidence that BfrAB regulates the expression of bfrCD and bfrEFG, which encode two ABC transporters, and bfrH, which encodes a CAAX amino-terminal protease family protein. BfrC and BfrE are ATP-binding proteins and BfrD, BfrF and BfrG are homologous membrane- spanning polypeptides. Similarly, BfrABss, the BfrAB homologous system in S. sanguinis controls the expression of two bfrCD-homologous operons (bfrCDss and bfrXYss), a bfrH-homologous gene (bfrH1ss) and another CAAX amino- terminal protease family protein gene (bfrH2ss). Furthermore, we demonstrate that the purified BfrA DNA-binding domain from S. gordonii binds to the promoter regions of bfrCD, bfrEFG, bfrH, bfrCDss, bfrXYss, and bfrH1ss in vitro. Finally, we show that the BfrA DNA-binding domain recognizes a conserved DNA motif with a consensuses sequence of TTTCTTTAGAAATATTTTAGAATT. These data suggest, therefore, that S. gordonii BfrAB could control biofilm formation by regulating multiple ABC-transporter systems.
PMCID: PMC2672948  PMID: 19118357
Two-component system; BfrAB; gene expression; streptococci
25.  Streptococcal Antagonism in Oral Biofilms: Streptococcus sanguinis and Streptococcus gordonii Interference with Streptococcus mutans▿  
Journal of Bacteriology  2008;190(13):4632-4640.
Biofilms are polymicrobial, with diverse bacterial species competing for limited space and nutrients. Under healthy conditions, the different species in biofilms maintain an ecological balance. This balance can be disturbed by environmental factors and interspecies interactions. These perturbations can enable dominant growth of certain species, leading to disease. To model clinically relevant interspecies antagonism, we studied three well-characterized and closely related oral species, Streptococcus gordonii, Streptococcus sanguinis, and cariogenic Streptococcus mutans. S. sanguinis and S. gordonii used oxygen availability and the differential production of hydrogen peroxide (H2O2) to compete effectively against S. mutans. Interspecies antagonism was influenced by glucose with reduced production of H2O2. Furthermore, aerobic conditions stimulated the competence system and the expression of the bacteriocin mutacin IV of S. mutans, as well as the H2O2-dependent release of heterologous DNA from mixed cultures of S. sanguinis and S. gordonii. These data provide new insights into ecological factors that determine the outcome of competition between pioneer colonizing oral streptococci and the survival mechanisms of S. mutans in the oral biofilm.
PMCID: PMC2446780  PMID: 18441055

Results 1-25 (29)