PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  The influence of iron availability on human salivary microbial community composition 
Microbial Ecology  2012;64(1):152-161.
It is a well-recognized fact that the composition of human salivary microbial community is greatly affected by its nutritional environment. However, most studies are currently focused on major carbon or nitrogen sources with limited attention to trace elements like essential mineral ions. In this study, we examined the effect of iron availability on the bacterial profiles of an in vitro human salivary microbial community as iron is an essential trace element for the survival and proliferation of virtually all microorganisms. Analysis via a combination of PCR with denaturing gradient gel electrophoresis (DGGE) demonstrated a drastic change in species composition of an in vitro human salivary microbiota when iron was scavenged from the culture medium by addition of the iron chelator 2,2’- bipyridyl (Bipy). This shift in community profile was prevented by the presence of excessive ferrous iron (Fe2+). Most interestingly, under iron deficiency, the in vitro grown salivary microbial community became dominated by several hemolytic bacterial species, including Streptococcus spp., Gemella spp. and Granulicatella spp.all of which have been implicated in infective endocarditis. These data provide evidence that iron availability can modulate host-associated oral microbial communities, resulting in a microbiota with potential clinical impact.
doi:10.1007/s00248-012-0013-2
PMCID: PMC3376180  PMID: 22318873
iron availability; microbial flora; oral cavity
2.  Selective Membrane Disruption: Mode of Action of C16G2, a Specifically Targeted Antimicrobial Peptide ▿ 
The specifically targeted antimicrobial peptide (STAMP) C16G2 was developed to target the cariogenic oral pathogen Streptococcus mutans. Because the design of this peptide was novel, we sought to better understand the mechanism through which it functioned. Compared to antimicrobial peptides (AMPs) with wide spectra of activity, the STAMP C16G2 has demonstrated specificity for S. mutans in a mixed-culture environment, resulting in the complete killing of S. mutans while having minimal effect on the other streptococci. In the current study, we sought to further confirm the selectivity of C16G2 and also compare its membrane activity to that of melittin B, a classical toxic AMP, in order to determine the STAMP's mechanism of cell killing. Disruption of S. mutans cell membranes by C16G2 was demonstrated by increased SYTOX green uptake and ATP efflux from the cells similar to those of melittin B. Treatment with C16G2 also resulted in a loss of membrane potential as measured by DiSC(3)5 fluorescence. In comparison, the individual moieties of C16G2 demonstrated no specificity and limited antimicrobial activity compared to those of the STAMP C16G2. The data suggest that C16G2 has a mechanism of action similar to that of traditional AMPs and kills S. mutans through disruption of the cell membrane, allowing small molecules to leak out of the cell, which is followed by a loss of membrane potential and cell death. Interestingly, this membrane activity is rapid and potent against S. mutans, but not other noncariogenic oral streptococci.
doi:10.1128/AAC.00342-11
PMCID: PMC3122425  PMID: 21518845

Results 1-2 (2)