PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (111)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Next Generation Inactivated Polio Vaccine Manufacturing to Support Post Polio-Eradication Biosafety Goals 
PLoS ONE  2013;8(12):e83374.
Worldwide efforts to eradicate polio caused a tipping point in polio vaccination strategies. A switch from the oral polio vaccine, which can cause circulating and virulent vaccine derived polioviruses, to inactivated polio vaccines (IPV) is scheduled. Moreover, a manufacturing process, using attenuated virus strains instead of wild-type polioviruses, is demanded to enhance worldwide production of IPV, especially in low- and middle income countries. Therefore, development of an IPV from attenuated (Sabin) poliovirus strains (sIPV) was pursued. Starting from the current IPV production process based on wild type Salk strains, adaptations, such as lower virus cultivation temperature, were implemented. sIPV was produced at industrial scale followed by formulation of both plain and aluminium adjuvanted sIPV. The final products met the quality criteria, were immunogenic in rats, showed no toxicity in rabbits and could be released for testing in the clinic. Concluding, sIPV was developed to manufacturing scale. The technology can be transferred worldwide to support post polio-eradication biosafety goals.
doi:10.1371/journal.pone.0083374
PMCID: PMC3861478  PMID: 24349497
2.  Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection 
PLoS ONE  2013;8(12):e81212.
Staphylococcus aureus is a common commensal organism in humans and a major cause of bacteremia and hospital acquired infection. Because of the spread of strains resistant to antibiotics, these infections are becoming more difficult to treat. Therefore, exploration of anti-staphylococcal vaccines is currently a high priority. Iron surface determinant B (IsdB) is an iron-regulated cell wall-anchored surface protein of S. aureus. Alpha-toxin (Hla) is a secreted cytolytic pore-forming toxin. Previous studies reported that immunization with IsdB or Hla protected animals against S. aureus infection. To develop a broadly protective vaccine, we constructed chimeric vaccines based on IsdB and Hla. Immunization with the chimeric bivalent vaccine induced strong antibody and T cell responses. When the protective efficacy of the chimeric bivalent vaccine was compared to that of individual proteins in a murine model of systemic S. aureus infection, the bivalent vaccine showed a stronger protective immune response than the individual proteins (IsdB or Hla). Based on the results presented here, the chimeric bivalent vaccine affords higher levels of protection against S. aureus and has potential as a more effective candidate vaccine.
doi:10.1371/journal.pone.0081212
PMCID: PMC3852261  PMID: 24324681
3.  Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase 
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.
doi:10.1155/2012/875383
PMCID: PMC3471063  PMID: 23091360
4.  A Transcriptomic View of the Proteome Variability of Newborn and Adult Bothrops jararaca Snake Venoms 
Background
Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens.
Methods/Principal Findings
Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some gender-related differences.
Conclusions/Significance
We demonstrate a substantial shift in toxin transcripts upon snake development and a marked decrease in the metalloproteinase P-III/P-I class ratio which are correlated with changes in the venom proteome complexity and pharmacological activities.
Author Summary
Bothrops jararaca is one of the most abundant venomous snake species in Brazil. It is primarily a nocturnal and generalist animal, however, it exhibits a notable ontogenetic shift in diet, feeding mainly on arthropods, lizards, and amphibians (ectothermic prey) through its juvenile phase and on small mammals (endothermic animals) during adult life. Due to its broad geographical distribution, this species is responsible for the majority of the accidents by Bothrops genus in Brazil. Studies on envenomation cases with newborn and adult B. jararaca snakes have shown distinct patterns, mainly related to blood coagulation disorders, which seems to be prominent in accidents with newborn specimens. Moreover, it has been demonstrated that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. In this study we analyzed the venom gland transcriptome of newborn snake specimens and compared the content of toxin transcripts with that of adult specimens. We demonstrate that upon B. jararaca development, its repertoire of mRNAs encoding toxins changes both qualitatively and quantitatively and these alterations are associated with the venom proteome profiles and pharmacological activities displayed by newborn and adult specimens.
doi:10.1371/journal.pntd.0001554
PMCID: PMC3302817  PMID: 22428077
6.  Potential Accumulative Effect of the Herbicide Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities over a Three-Year Cultivation Period 
PLoS ONE  2011;6(11):e27558.
Background
Glyphosate is a herbicide that is liable to be used in the extensive cultivation of glyphosate-tolerant cultivars. The potential accumulation of the relative effect of glyphosate on the rhizobacterial communities of glyphosate-tolerant maize has been monitored over a period of three years.
Methodology/Principal Findings
The composition of rhizobacterial communities is known to vary with soil texture, hence, the analyses have been performed in two agricultural fields with a different soil texture. The accumulative effects of glyphosate have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The relative composition of the rhizobacterial communities does vary in each field over the three-year period. The overall distribution of the bacterial phyla seems to change from one year to the next similarly in the untreated and glyphosate-treated soils in both fields. The two methods used to estimate bacterial diversity offered consistent results and are equally suitable for diversity assessment.
Conclusions/Significance
The glyphosate treatment during the three-year period of seasonal cultivation in two different fields did not seem to significantly change the maize rhizobacterial communities when compared to those of the untreated soil. This may be particularly relevant with respect to a potential authorisation to cultivate glyphosate-tolerant maize in the European Union.
doi:10.1371/journal.pone.0027558
PMCID: PMC3214082  PMID: 22096595
7.  Extracellular Matrix from Porcine Small Intestinal Submucosa (SIS) as Immune Adjuvants 
PLoS ONE  2011;6(11):e27083.
Porcine small intestinal submucosa (SIS) of Cook Biotech is licensed and widely used for tissue remodeling in humans. SIS was shown to be highly effective as an adjuvant in model studies with prostate and ovarian cancer vaccines. However, SIS adjuvanticity relative to alum, another important human-licensed adjuvant, has not yet been delineated in terms of activation of innate immunity via inflammasomes and boosting of antibody responses to soluble proteins and hapten-protein conjugates. We used ovalbumin, and a hapten-protein conjugate, phthalate-keyhole limpet hemocyanin. The evaluation of SIS was conducted in BALB/c and C57BL/6 mice using both intraperitoneal and subcutaneous routes. Inflammatory responses were studied by microarray profiling of chemokines and cytokines and by qPCR of inflammasomes-related genes. Results showed that SIS affected cytokine and chemokines microenvironments such as up-regulation of IL-4 and CD30-ligand and activation of chemotactic factors LIX and KC (neutrophil chemotactic factors), MCP-1 (monocytes chemotactic factors), MIP 1-α (macrophage chemotactic factor) and lymphotactin, as well as, growth factors like M-CSF. SIS also promoted gene expression of Nod-like receptors (NLR) and associated downstream effectors. However, in contrast to alum, SIS had no effects on pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) or NLRP3, but it appeared to promote both Th1 and Th2 responses under different conditions. Lastly, it was as effective as alum in engendering a lasting and specific antibody response, primarily of IgG1 type.
doi:10.1371/journal.pone.0027083
PMCID: PMC3210130  PMID: 22087247
8.  Improved Expression Systems for Regulated Expression in Salmonella Infecting Eukaryotic Cells 
PLoS ONE  2011;6(8):e23055.
In this work we describe a series of improvements to the Salmonella-based salicylate-inducible cascade expression system comprised of a plasmid-borne expression module, where target gene expression is driven by the Pm promoter governed by the XylS2 regulator, and a genome-integrated regulatory module controlled by the nahR/Psal system. We have constructed a set of high and low-copy number plasmids bearing modified versions of the expression module with a more versatile multiple cloning site and different combinations of the following elements: (i) the nasF transcriptional attenuator, which reduces basal expression levels, (ii) a strong ribosome binding site, and (iii) the Type III Secretion System (TTSS) signal peptide from the effector protein SspH2 to deliver proteins directly to the eukaryotic cytosol following bacterial infection of animal cells. We show that different expression module versions can be used to direct a broad range of protein production levels. Furthermore, we demonstrate that the efficient reduction of basal expression by the nasF attenuator allows the cloning of genes encoding highly cytotoxic proteins such as colicin E3 even in the absence of its immunity protein. Additionally, we show that the Salmonella TTSS is able to translocate most of the protein produced by this regulatory cascade to the cytoplasm of infected HeLa cells. Our results indicate that these vectors represent useful tools for the regulated overproduction of heterologous proteins in bacterial culture or in animal cells, for the cloning and expression of genes encoding toxic proteins and for pathogenesis studies.
doi:10.1371/journal.pone.0023055
PMCID: PMC3148252  PMID: 21829692
9.  Comparison of Eight Methods for the Extraction of Bacillus atrophaeus Spore DNA from Eleven Common Interferents and a Common Swab 
PLoS ONE  2011;6(7):e22668.
Eight DNA extraction products or methods (Applied Biosystems PrepFiler Forensic DNA Extraction Kit; Bio-Rad Instagene Only, Bio-Rad Instagene & Spin Column Purification; EpiCentre MasterPure DNA & RNA Kit; FujiFilm QuickGene Mini80; Idaho Technologies 1-2-3 Q-Flow Kit; MoBio UltraClean Microbial DNA Isolation Kit; Sigma Extract-N-Amp Plant and Seed Kit) were adapted to facilitate extraction of DNA under BSL3 containment conditions. DNA was extracted from 12 common interferents or sample types, spiked with spores of Bacillus atropheaus. Resulting extracts were tested by real-time PCR. No one method was the best, in terms of DNA extraction, across all sample types. Statistical analysis indicated that the PrepFiler method was the best method from six dry powders (baking, biological washing, milk, plain flour, filler and talcum) and one solid (Underarm deodorant), the UltraClean method was the best from four liquids (aftershave, cola, nutrient broth, vinegar), and the MasterPure method was the best from the swab sample type. The best overall method, in terms of DNA extraction, across all sample types evaluated was the UltraClean method.
doi:10.1371/journal.pone.0022668
PMCID: PMC3144239  PMID: 21818364
10.  Changes in Parasite Virulence Induced by the Disruption of a Single Member of the 235 kDa Rhoptry Protein Multigene Family of Plasmodium yoelii 
PLoS ONE  2011;6(5):e20170.
Invasion of the erythrocyte by the merozoites of the malaria parasite is a complex process involving a range of receptor-ligand interactions. Two protein families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding Protein Homologues (RH) play an important role in host cell recognition by the merozoite. In the rodent malaria parasite, Plasmodium yoelii, the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are members of the RH. In P. yoelii Py235 as well as a single member of EBL have been shown to be key mediators of virulence enabling the parasite to invade a wider range of host erythrocytes. One member of Py235, PY01365 is most abundantly transcribed in parasite populations and the protein specifically binds to erythrocytes and is recognized by the protective monoclonal antibody 25.77, suggesting a key role of this particular member in virulence. Recent studies have indicated that overall levels of Py235 expression are essential for parasite virulence. Here we show that disruption of PY01365 in the virulent YM line directly impacts parasite virulence. Furthermore the disruption of PY01365 leads to a reduction in the number of schizonts that express members of Py235 that react specifically with the mcAb 25.77. Erythrocyte binding assays show reduced binding of Py235 to red blood cells in the PY01365 knockout parasite as compared to YM. While our results identify PY01365 as a mediator of parasite virulence, they also confirm that other members of Py235 are able to substitute for PY01365.
doi:10.1371/journal.pone.0020170
PMCID: PMC3098881  PMID: 21625465
11.  Identification of a Single-Nucleotide Insertion in the Promoter Region Affecting the sodC Promoter Activity in Brucella neotomae 
PLoS ONE  2010;5(11):e14112.
Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD), a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.
doi:10.1371/journal.pone.0014112
PMCID: PMC2991346  PMID: 21124845
12.  Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-Time PCR 
PLoS ONE  2010;5(6):e11337.
Background
Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics.
Methodology/Principal Findings
The objective of this work was to develop an alternative to conventional phage lysis tests – a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages ϕA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. ϕA1122-specific qPCR enabled the detection of an initial bacterial concentration of 103 CFU/ml (equivalent to as few as one Y. pestis cell per 1-µl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, ϕA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR.
Conclusions/Significance
Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.
doi:10.1371/journal.pone.0011337
PMCID: PMC2893161  PMID: 20596528
13.  Versatile Virus-Like Particle Carrier for Epitope Based Vaccines 
PLoS ONE  2010;5(3):e9809.
Background
Recombinant proteins and in particular single domains or peptides are often poorly immunogenic unless conjugated to a carrier protein. Virus-like-particles are a very efficient means to confer high immunogenicity to antigens. We report here the development of virus-like-particles (VLPs) derived from the RNA bacteriophage AP205 for epitope-based vaccines.
Methodology/Principal Findings
Peptides of angiotensin II, S.typhi outer membrane protein (D2), CXCR4 receptor, HIV1 Nef, gonadotropin releasing hormone (GnRH), Influenza A M2-protein were fused to either N- or C-terminus of AP205 coat protein. The A205-peptide fusions assembled into VLPs, and peptides displayed on the VLP were highly immunogenic in mice. GnRH fused to the C-terminus of AP205 induced a strong antibody response that inhibited GnRH function in vivo. Exposure of the M2-protein peptide at the N-terminus of AP205 resulted in a strong M2-specific antibody response upon immunization, protecting 100% of mice from a lethal influenza infection.
Conclusions/Significance
AP205 VLPs are therefore a very efficient and new vaccine system, suitable for complex and long epitopes, of up to at least 55 amino acid residues in length. AP205 VLPs confer a high immunogenicity to displayed epitopes, as shown by inhibition of endogenous GnRH and protective immunity against influenza infection.
doi:10.1371/journal.pone.0009809
PMCID: PMC2843720  PMID: 20352110
14.  Pertussis Toxin Stimulates IL-17 Production in Response to Bordetella pertussis Infection in Mice 
PLoS ONE  2009;4(9):e7079.
In a mouse model of respiratory tract infection by Bordetella pertussis, bacteria multiply in the airways over the first week and are then cleared over the next 3–4 weeks by the host immune response. Pertussis toxin (PT), a virulence factor secreted exclusively by B. pertussis, promotes bacterial growth in the airways by suppression and modulation of host immune responses. By comparison of wild type and PT-deficient strains, we examined the role of PT in modulating airway cytokine and chemokine responses affecting neutrophil recruitment during B. pertussis infection in mice. We found that, despite early inhibition of neutrophil recruitment by PT, high numbers of neutrophils were recruited to the airways by 4 days post-infection with the wild type strain, but not with the PT-deficient strain, and that this correlated with upregulation of neutrophil-attracting chemokine gene expression. In addition, there was similar upregulation of genes expressing the cytokines IL-17A (IL-17), TNF-α and IFN-γ, indicating a mixed Th1/Th17 response. Expression of IL-6, a cytokine involved in Th17 induction, was upregulated earlier than the IL-17 response. We showed that PT, rather than bacterial numbers, was important for induction of these responses. Flow cytometric analysis revealed that the IL-17-producing cells were macrophages and neutrophils as well as T cells, and were present predominantly in the airways rather than the lung tissue. Antibody neutralization of IL-17 significantly reduced chemokine gene expression and neutrophil recruitment to the airways, but only modestly increased peak bacterial loads. These data indicate that PT stimulates inflammatory responses by induction of Th1- and Th17-associated cytokines, including IL-17, during B. pertussis infection in mice, but a role for IL-17 in protection against the infection remains to be established.
doi:10.1371/journal.pone.0007079
PMCID: PMC2738961  PMID: 19759900
15.  Differential Bacterial Surface Display of Peptides by the Transmembrane Domain of OmpA 
PLoS ONE  2009;4(8):e6739.
Peptide libraries or antigenic determinants can be displayed on the surface of bacteria through insertion in a suitable outer membrane scaffold protein. Here, we inserted the well-known antibody epitopes 3xFLAG and 2xmyc in exterior loops of the transmembrane (TM) domain of OmpA. Although these highly charged epitopes were successfully displayed on the cell surface, their levels were 10-fold reduced due to degradation. We verified that the degradation was not caused by the absence of the C-terminal domain of OmpA. In contrast, a peptide that was only moderately charged (SA-1) appeared to be stably incorporated in the outer membrane at normal protein levels. Together, these results suggest that the display efficiency is sensitive to the charge of the inserted epitopes. In addition, the high-level expression of OmpA variants with surface-displayed epitopes adversely affected growth in a strain dependent, transient manner. In a MC4100 derived strain growth was affected, whereas in MC1061 derived strains growth was unaffected. Finally, results obtained using a gel-shift assay to monitor β-barrel folding in vivo show that the insertion of small epitopes can change the heat modifiability of the OmpA TM domain from ‘aberrant’ to normal, and predict that some β-barrels will not display any significant heat-modifiability at all.
doi:10.1371/journal.pone.0006739
PMCID: PMC2726941  PMID: 19707582
16.  Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways 
PLoS ONE  2009;4(7):e6441.
High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC). This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or single-stranded homologous recombination is required. In this study, we elucidate the CPEC reaction mechanism and demonstrate its usage in demanding synthetic biology applications such as one-step assembly and cloning of complex combinatorial libraries and multi-component pathways.
doi:10.1371/journal.pone.0006441
PMCID: PMC2713398  PMID: 19649325
17.  Acute and Persistent Mycobacterium tuberculosis Infections Depend on the Thiol Peroxidase TPX 
PLoS ONE  2009;4(4):e5150.
The macrophage is the natural niche of Mycobacterium tuberculosis infection. In order to combat oxidative and nitrosative stresses and persist in macrophages successfully, M. tuberculosis is endowed with a very efficient antioxidant complex. Amongst these antioxidant enzymes, TpX is the only one in M. tuberculosis with sequence homology to thiol peroxidase. Previous reports have demonstrated that the M. tuberculosis TpX protein functions as a peroxidase in vitro. It is the dominant antioxidant which protects M. tuberculosis against oxidative and nitrosative stresses. The level of the protein increases in oxidative stress. To determine the roles of tpx gene in M. tuberculosis survival and virulence in vivo, we constructed an M. tuberculosis strain lacking the gene. The characteristics of the mutant were examined in an in vitro stationary phase model, in response to stresses; in murine bone marrow derived macrophages and in an acute and an immune resistant model of murine tuberculosis. The tpx mutant became sensitive to H2O2 and NO compared to the wild type strain. Enzymatic analysis using bacterial extracts from the WT and the tpx mutant demonstrated that the mutant contains reduced peroxidase activity. As a result of this, the mutant failed to grow and survive in macrophages. The growth deficiency in macrophages became more pronounced after interferon-γ activation. In contrast, its growth was significantly restored in the macrophages of inducible nitric oxide synthase (iNOS or NOS2) knockout mice. Moreover, the tpx mutant was impaired in its ability to initiate an acute infection and to maintain a persistent infection. Its virulence was attenuated. Our results demonstrated that tpx is required for M. tuberculosis to deal with oxidative and nitrosative stresses, to survive in macrophages and to establish acute and persistent infections in animal tuberculosis models.
doi:10.1371/journal.pone.0005150
PMCID: PMC2659749  PMID: 19340292
18.  In LipL32, the Major Leptospiral Lipoprotein, the C Terminus Is the Primary Immunogenic Domain and Mediates Interaction with Collagen IV and Plasma Fibronectin ▿  
Infection and Immunity  2008;76(6):2642-2650.
LipL32 is the major leptospiral outer membrane lipoprotein expressed during infection and is the immunodominant antigen recognized during the humoral immune response to leptospirosis in humans. In this study, we investigated novel aspects of LipL32. In order to define the immunodominant domains(s) of the molecule, subfragments corresponding to the N-terminal, intermediate, and C-terminal portions of the LipL32 gene were cloned and the proteins were expressed and purified by metal affinity chromatography. Our immunoblot results indicate that the C-terminal and intermediate domains of LipL32 are recognized by sera of patients with laboratory-confirmed leptospirosis. An immunoglobulin M response was detected exclusively against the LipL32 C-terminal fragment in both the acute and convalescent phases of illness. We also evaluated the capacity of LipL32 to interact with extracellular matrix (ECM) components. Dose-dependent, specific binding of LipL32 to collagen type IV and plasma fibronectin was observed, and the binding capacity could be attributed to the C-terminal portion of this molecule. Both heparin and gelatin could inhibit LipL32 binding to fibronectin in a concentration-dependent manner, indicating that the 30-kDa heparin-binding and 45-kDa gelatin-binding domains of fibronectin are involved in this interaction. Taken together, our results provide evidence that the LipL32 C terminus is recognized early in the course of infection and is the domain responsible for mediating interaction with ECM proteins.
doi:10.1128/IAI.01639-07
PMCID: PMC2423089  PMID: 18391007
19.  Diversity of physiological cell reactivity to heat shock protein 60 in different mouse strains 
Cell Stress & Chaperones  2007;12(2):112-122.
Heat shock proteins (Hsp) are families of highly conserved molecules and immunodominant antigens in some infections and in autoimmune diseases. Some reports suggest that different regions of the Hsp60 molecule induce distinct immune responses. However, there are no reports comparing physiological T-cell reactivity to Hsp60 in mice. In this study, we have analyzed T-cell proliferation and cytokine production induced by Hsp60, under physiological conditions, in three mouse strains bearing distinct major histocompatibility complex (MHC) backgrounds. Proliferative response predominantly was found in C57BL/6 mice, mostly induced by N-terminal and intermediate Hsp60 peptides (P < 0.0001). Interferon-γ (IFNγ) production was broadly induced by different regions of Hsp60 in all three mouse strains, although response was focused in different peptide groups in each strain. We did not observe an exclusive Th1 or Th2 cytokine profile induced by any particular region of Hsp60. However, we identified a strain hierarchy in IL-10 production induced by Hsp60 peptides from different regions, mostly detected in C3H/HePas, and in BALB/c, but not in C57BL/6 mice. In contrast, IL-4 production only was induced by the intermediate and C-terminal region peptides in both C3H/HePas and BALB/c mice. Our data give original information on physiological cellular reactivity to Hsp60. We also have identified peptides with the capacity to induce the production of anti-inflammatory cytokines, bringing perspectives for their use in immunotherapy of chronic inflammatory diseases and allograft rejection.
doi:10.1379/CSC-209R.1
PMCID: PMC1949334  PMID: 17688190
20.  Production of Human Papillomavirus Type 16 L1 Virus-Like Particles by Recombinant Lactobacillus casei Cells 
Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines.
doi:10.1128/AEM.72.1.745-752.2006
PMCID: PMC1352212  PMID: 16391114
22.  Multiserotype Protection of Mice against Pneumococcal Colonization of the Nasopharynx and Middle Ear by Killed Nonencapsulated Cells Given Intranasally with a Nontoxic Adjuvant  
Infection and Immunity  2004;72(7):4290-4292.
Intranasal challenge of C57BL/6 mice with Streptococcus pneumoniae serotypes 6B, 14, and 23F produced colonization of the middle ear and NP. Intranasal vaccination with ethanol-killed nonencapsulated cells with adjuvant protected both sites. Of four nontoxic adjuvants tested, the cholera toxin B subunit was most effective and least nonspecifically protective.
doi:10.1128/IAI.72.7.4290-4292.2004
PMCID: PMC427453  PMID: 15213177
23.  Sample Limited Characterization of a Novel Disulfide-Rich Venom Peptide Toxin from Terebrid Marine Snail Terebra variegata 
PLoS ONE  2014;9(4):e94122.
Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.
doi:10.1371/journal.pone.0094122
PMCID: PMC3979744  PMID: 24713808
24.  The Concentration of Carbon Source in the Medium Affects the Quality of Virus-Like Particles of Human Papillomavirus Type 16 Produced in Saccharomyces cerevisiae 
PLoS ONE  2014;9(4):e94467.
There is accumulating evidence that virus-like particles (VLPs) recombinantly produced in Saccharomyces cerevisiae (S. cerevisiae) are characterized by low structural stability, and that this is associated with reduced antigenicity and immunogenicity. However, little attention has been devoted to methods of improving the quality of the VLPs. Here, we investigated the effect of carbon source concentration in the medium on the antigenicity and immunogenicity of human papillomavirus (HPV) type 16 L1 VLPs expressed in S. cerevisiae from the galactose promoter. Media containing 2, 4, 6, and 8% carbon source, composed of both glucose and galactose in equal proportion, were used. VLP antigenicity was enhanced in cultures grown on media with 6 or 8% carbon source, compared to those from cultures with less than 6% carbon source. Moreover, the VLPs obtained from these cultures induced higher anti-HPV16 L1 IgG titers and neutralizing antibody titers in immunized mice than those purified from cultures with less than 6% carbon source. Our results indicate that the concentration of the carbon source in the medium plays a crucial role in determining the antigenicity and immunogenicity of HPV type16 L1 VLPs.
doi:10.1371/journal.pone.0094467
PMCID: PMC3979840  PMID: 24714383
25.  A Recombinant Rabies Virus Encoding Two Copies of the Glycoprotein Gene Confers Protection in Dogs against a Virulent Challenge 
PLoS ONE  2014;9(2):e87105.
The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines
doi:10.1371/journal.pone.0087105
PMCID: PMC3911940  PMID: 24498294

Results 1-25 (111)