Search tips
Search criteria

Results 1-25 (36)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  In vitro Manganese-Dependent Cross-Talk between Streptococcus mutans VicK and GcrR: Implications for Overlapping Stress Response Pathways 
PLoS ONE  2014;9(12):e115975.
Streptococcus mutans, a major acidogenic component of the dental plaque biofilm, has a key role in caries etiology. Previously, we demonstrated that the VicRK two-component signal transduction system modulates biofilm formation, oxidative stress and acid tolerance responses in S. mutans. Using in vitro phosphorylation assays, here we demonstrate for the first time, that in addition to activating its cognate response regulator protein, the sensor kinase, VicK can transphosphorylate a non-cognate stress regulatory response regulator, GcrR, in the presence of manganese. Manganese is an important micronutrient that has been previously correlated with caries incidence, and which serves as an effector of SloR-mediated metalloregulation in S. mutans. Our findings supporting regulatory effects of manganese on the VicRK, GcrR and SloR, and the cross-regulatory networks formed by these components are more complex than previously appreciated. Using DNaseI footprinting we observed overlapping DNA binding specificities for VicR and GcrR in native promoters, consistent with these proteins being part of the same transcriptional regulon. Our results also support a role for SloR as a positive regulator of the vicRK two component signaling system, since its transcription was drastically reduced in a SloR-deficient mutant. These findings demonstrate the regulatory complexities observed with the S. mutans manganese-dependent response, which involves cross-talk between non-cognate signal transduction systems (VicRK and GcrR) to modulate stress response pathways.
PMCID: PMC4275253  PMID: 25536343
2.  A Biochemical Characterization of the DNA Binding Activity of the Response Regulator VicR from Streptococcus mutans 
PLoS ONE  2014;9(9):e108027.
Two-component systems (TCSs) are ubiquitous among bacteria and are among the most elegant and effective sensing systems in nature. They allow for efficient adaptive responses to rapidly changing environmental conditions. In this study, we investigated the biochemical characteristics of the Streptococcus mutans protein VicR, an essential response regulator that is part of the VicRK TCS. We dissected the DNA binding requirements of the recognition sequences for VicR in its phosphorylated and unphosphorylated forms. In doing so, we were able to make predictions for the expansion of the VicR regulon within S. mutans. With the ever increasing number of bacteria that are rapidly becoming resistant to even the antibiotics of last resort, TCSs such as the VicRK provide promising targets for a new class of antimicrobials.
PMCID: PMC4168254  PMID: 25229632
3.  CinA is regulated via ComX to modulate genetic transformation and cell viability in Streptococcus mutans 
Fems Microbiology Letters  2012;331(1):44-52.
The Streptococcus mutans ComX-regulon encompasses >200 mostly uncharacterized genes, including cinA. Here we report that cinA is regulated by ComX in the presence of the competence stimulating peptide (CSP), wherein loss of CinA (strain SmuCinA) results in reduced transformability with or without added CSP by 74- and 15-fold, respectively (p<0.003). In CSP-supplemented cultures, a 2-fold increase in cell viability was noted for SmuCinA relative to UA159 (p<0.002), suggesting CinA’s involvement in the CSP-modulated cell killing response. Relative to UA159, loss of CinA also rendered the mutant hypersensitive to killing by methyl methanesulfonate (MMS), which impairs homologous recombination. Despite our use of a non-polar mutagenesis strategy to knockout cinA, which is the first gene of the multicistronic operon harboring cinA, we noted a drastic reduction in recA expression. By using a CinA-complemented mutant, we were able to partially, but not completely restore all phenotypes to UA159 levels. Complementation results suggested that although cinA participates in modulating competence, viability and MMS tolerance, genes downstream of the cinA transcript may also regulate these phenotypes, a finding that warrants further examination. This is the first report that describes a role for S. mutans’ CinA in contending with DNA damage, genetic transformation and cell survival.
PMCID: PMC3343223  PMID: 22428842
Streptococcus mutans; cinA; comX; CSP; genetic competence; cell death
4.  Structural and Functional Analysis of the N-terminal Domain of the Streptococcus gordonii Adhesin Sgo0707 
PLoS ONE  2013;8(5):e63768.
The commensal Streptococcus gordonii expresses numerous surface adhesins with which it interacts with other microorganisms, host cells and salivary proteins to initiate dental plaque formation. However, this Gram-positive bacterium can also spread to non-oral sites such as the heart valves and cause infective endocarditis. One of its surface adhesins, Sgo0707, is a large protein composed of a non-repetitive N-terminal region followed by several C-terminal repeat domains and a cell wall sorting motif. Here we present the crystal structure of the Sgo0707 N-terminal domains, refined to 2.1 Å resolution. The model consists of two domains, N1 and N2. The largest domain, N1, comprises a putative binding cleft with a single cysteine located in its centre and exhibits an unexpected structural similarity to the variable domains of the streptococcal Antigen I/II adhesins. The N2-domain has an IgG-like fold commonly found among Gram-positive surface adhesins. Binding studies performed on S. gordonii wild-type and a Sgo0707 deficient mutant show that the Sgo0707 adhesin is involved in binding to type-1 collagen and to oral keratinocytes.
PMCID: PMC3656908  PMID: 23691093
5.  TcyR regulates L-cystine uptake via the TcyABC transporter in Streptococcus mutans 
Fems Microbiology Letters  2012;328(2):114-121.
Streptococcus mutans, a primary dental pathogen, has a remarkable capacity to scavenge nutrients from the oral biofilm for its survival. Cystine is an amino acid dimer formed by the oxidation of two cysteine residues that is required for optimal growth, whereas S. mutans modulates l-cystine uptake via two recently identified transporters designated TcyABC and TcyDEFGH, which have not been fully characterized. Using a non-polar tcyABC-deficient mutant (SmTcyABC), here we report that L-cystine uptake is drastically diminished in the mutant, whereas its ability to grow is severely impaired under l-cystine starvation conditions, relative to wild type. A substrate competition assay showed that l-cystine uptake by the TcyABC transporter was strongly inhibited by dl-cystathionine and l-djenkolic acid and moderately inhibited by S-methyl-l-cysteine and l-cysteine. Using gene expression analysis, we observed that the tcyABC operon was up-regulated under cystine starvation. TcyABC has been shown to be positively regulated by the LysR-type transcriptional regulator CysR. We identified another LysR-type transcriptional regulator that negatively regulates TcyABC with homology to the B. subtilis YtlI regulator, which we termed TcyR. Our study enhances the understanding of l-cystine uptake in S. mutans which allows survival and persistence of this pathogen in the oral biofilm.
PMCID: PMC3288405  PMID: 22212096
Cystine; cysteine; transport; TcyABC; Streptococcus mutans
6.  Mechanistic Insights Revealed by the Crystal Structure of a Histidine Kinase with Signal Transducer and Sensor Domains 
PLoS Biology  2013;11(2):e1001493.
A crystal structure reveals an elegant mechanistic switch whereby helical bending and catalytic domain rotation allow self-activation of a histidine kinase during a bacterial stress response.
Two-component systems (TCSs) are important for the adaptation and survival of bacteria and fungi under stress conditions. A TCS is often composed of a membrane-bound sensor histidine kinase (SK) and a response regulator (RR), which are relayed through sequential phosphorylation steps. However, the mechanism for how an SK is switched on in response to environmental stimuli remains obscure. Here, we report the crystal structure of a complete cytoplasmic portion of an SK, VicK from Streptococcus mutans. The overall structure of VicK is a long-rod dimer that anchors four connected domains: HAMP, Per-ARNT-SIM (PAS), DHp, and catalytic and ATP binding domain (CA). The HAMP, a signal transducer, and the PAS domain, major sensor, adopt canonical folds with dyad symmetry. In contrast, the dimer of the DHp and CA domains is asymmetric because of different helical bends in the DHp domain and spatial positions of the CA domains. Moreover, a conserved proline, which is adjacent to the phosphoryl acceptor histidine, contributes to helical bending, which is essential for the autokinase and phosphatase activities. Together, the elegant architecture of VicK with a signal transducer and sensor domain suggests a model where DHp helical bending and a CA swing movement are likely coordinated for autokinase activation.
Author Summary
Two-component signal transduction systems (TCSs) are promising targets for new antimicrobial research because they help bacteria and fungi adapt and survive. One of the main components of TCSs is a sensor histidine kinase (SK), which relays extracellular signals to intracellular pathways. Despite intensive research, a full-length structure of an SK has yet to be solved. In this study, we report the first crystal structure of the complete cytoplasmic region of VicK, an important SK in the tooth decay pathogen S. mutans. VicK is composed of several domains (HAMP, PAS, DHp, and catalytic and ATP binding domain [CA]) in addition to a short transmembrane domain. We find that the dimeric VicK protein has an elegant rod-shaped structure with the domains linearly connected like beads on a string. The structure suggests that VicK kinase activates itself by helical bending of the DHp domain and coordinated swinging around of the catalytic CA domain to engage with the target histidine. Structure-based mutagenesis experiments also helped us to identify key residues that are required for VicK's opposing phosphatase activity. Our studies of the multi-modular VicK protein suggest a sequential kinase activation model that may involve helical bending of the DHp domain and repositioning of the CA domains.
PMCID: PMC3582566  PMID: 23468592
7.  Oligomerization of the Response Regulator ComE from Streptococcus mutans Is Affected by Phosphorylation 
Journal of Bacteriology  2012;194(5):1127-1135.
We have previously characterized the interactions of the response regulator ComE from Streptococcus mutans and DNA binding sites through DNase I footprinting and electrophoretic mobility shift assay analysis. Since response regulator functions are often affected by their phosphorylation state, we investigated how phosphorylation affects the biochemical function of ComE. Unlike many response regulators, we found that the phosphorylation state of ComE does not likely play a role in DNA binding affinity but rather seems to induce the formation of an oligomeric form of the protein. The role of this oligomerization state for ComE function is discussed.
PMCID: PMC3294772  PMID: 22210762
8.  Regulation of the Competence Pathway as a Novel Role Associated with a Streptococcal Bacteriocin▿† 
Journal of Bacteriology  2011;193(23):6552-6559.
The oral biofilm organism Streptococcus mutans must face numerous environmental stresses to survive in its natural habitat. Under specific stresses, S. mutans expresses the competence-stimulating peptide (CSP) pheromone known to induce autolysis and facilitate the uptake and incorporation of exogenous DNA, a process called DNA transformation. We have previously demonstrated that the CSP-induced CipB bacteriocin (mutacin V) is a major factor involved in both cellular processes. Our objective in this work was to characterize the role of CipB bacteriocin during DNA transformation. Although other bacteriocin mutants were impaired in their ability to acquire DNA under CSP-induced conditions, the ΔcipB mutant was the only mutant showing a sharp decrease in transformation efficiency. The autolysis function of CipB bacteriocin does not participate in the DNA transformation process, as factors released via lysis of a subpopulation of cells did not contribute to the development of genetic competence in the surviving population. Moreover, CipB does not seem to participate in membrane depolarization to assist passage of DNA. Microarray-based expression profiling showed that under CSP-induced conditions, CipB regulated ∼130 genes, among which are the comDE locus and comR and comX genes, encoding critical factors that influence competency development in S. mutans. We also discovered that the CipI protein conferring immunity to CipB-induced autolysis also prevented the transcriptional regulatory activity of CipB. Our data suggest that besides its role in cell lysis, the S. mutans CipB bacteriocin also functions as a peptide regulator for the transcriptional control of the competence regulon.
PMCID: PMC3232909  PMID: 21984782
9.  Characterization of DNA Binding Sites of the ComE Response Regulator from Streptococcus mutans▿† 
Journal of Bacteriology  2011;193(14):3642-3652.
In Streptococcus mutans, both competence and bacteriocin production are controlled by ComC and the ComED two-component signal transduction system. Recent studies of S. mutans suggested that purified ComE binds to two 11-bp direct repeats in the nlmC-comC promoter region, where ComE activates nlmC and represses comC. In this work, quantitative binding studies and DNase I footprinting analysis were performed to calculate the equilibrium dissociation constant and further characterize the binding site of ComE. We found that ComE protects sequences inclusive of both direct repeats, has an equilibrium dissociation constant in the nanomolar range, and binds to these two direct repeats cooperatively. Furthermore, similar direct repeats were found upstream of cslAB, comED, comX, ftf, vicRKX, gtfD, gtfB, gtfC, and gbpB. Quantitative binding studies were performed on each of these sequences and showed that only cslAB has a similar specificity and high affinity for ComE as that seen with the upstream region of comC. A mutational analysis of the binding sequences showed that ComE does not require both repeats to bind DNA with high affinity, suggesting that single site sequences in the genome may be targets for ComE-mediated regulation. Based on the mutational analysis and DNase I footprinting analysis, we propose a consensus ComE binding site, TCBTAAAYSGT.
PMCID: PMC3133340  PMID: 21602345
10.  Bacterial biogeography of the human digestive tract 
Scientific Reports  2011;1:170.
We present bacterial biogeography as sampled from the human gastrointestinal tract of four healthy subjects. This study generated >32 million paired-end sequences of bacterial 16S rRNA genes (V3 region) representing >95,000 unique operational taxonomic units (OTUs; 97% similarity clusters), with >99% Good's coverage for all samples. The highest OTU richness and phylogenetic diversity was found in the mouth samples. The microbial communities of multiple biopsy sites within the colon were highly similar within individuals and largely distinct from those in stool. Within an individual, OTU overlap among broad site definitions (mouth, stomach/duodenum, colon and stool) ranged from 32–110 OTUs, 25 of which were common to all individuals and included OTUs affiliated with Faecalibacterium prasnitzii and the TM7 phylum. This first comprehensive characterization of the abundant and rare microflora found along the healthy human digestive tract represents essential groundwork to investigate further how the human microbiome relates to health and disease.
PMCID: PMC3240969  PMID: 22355685
11.  Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA 
FEMS microbiology letters  2009;299(2):261-266.
Streptococcal competence-stimulating peptides (CSPs) were once thought to passively communicate population density in a process known classically as quorum sensing. However, recent evidence has shown that these peptides may also be inducible ‘alarmones,’ capable of conveying sophisticated messages in a population including the induction of altruistic cellular suicide under stressful conditions. We have previously characterized the alarmone response in Streptococcus mutans, a cariogenic resident of the oral flora, in which a novel bacteriocin-like peptide causes cell death in a subset of the population. Our objective in this work was to characterize the mechanism of immunity to cell death in S. mutans. Toward this goal, we have identified the conditions under which immunity is induced, and identified the regulatory system responsible for differential (and protective) expression of immunity. We also showed that CSP-induced death contributes to S. mutans biofilm formation through the release of chromosomal DNA into the extracellular matrix, providing a long sought-after mechanistic explanation for the role of CSP in S. mutans biofilm formation.
PMCID: PMC2771664  PMID: 19735463
Streptococcus mutans; biofilm; extracellular DNA; peptide pheromone; autolysis
12.  Characterization of a Glutamate Transporter Operon, glnQHMP, in Streptococcus mutans and Its Role in Acid Tolerance▿ †  
Journal of Bacteriology  2009;192(4):984-993.
Glutamate contributes to the acid tolerance response (ATR) of many Gram-negative and Gram-positive bacteria, but its role in the ATR of the oral bacterium Streptococcus mutans is unknown. This study describes the discovery and characterization of a glutamate transporter operon designated glnQHMP (Smu.1519 to Smu.1522) and investigates its potential role in acid tolerance. Deletion of glnQHMP resulted in a 95% reduction in transport of radiolabeled glutamate compared to the wild-type UA159 strain. The addition of glutamate to metabolizing UA159 cells resulted in an increased production of acidic end products, whereas the glnQHMP mutant produced less lactic acid than UA159, suggesting a link between glutamate metabolism and acid production and possible acid tolerance. To investigate this possibility, we conducted a microarray analysis with glutamate and under pH 5.5 and pH 7.5 conditions which showed that expression of the glnQHMP operon was downregulated by both glutamate and mild acid. We also measured the growth kinetics of UA159 and its glnQHMP-negative derivative at pH 5.5 and found that the mutant doubled at a much slower rate than the parent strain but survived at pH 3.5 significantly better than the wild type. Taken together, these findings support the involvement of the glutamate transporter operon glnQHMP in the acid tolerance response in S. mutans.
PMCID: PMC2812961  PMID: 20023025
13.  Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence 
Molecular microbiology  2009;72(4):905-917.
The induction of genetic competence is a strategy used by bacteria to increase their genetic repertoire under stressful environmental conditions. Recently, Streptococcus pneumoniae has been shown to co-ordinate the uptake of transforming DNA with fratricide via increased expression of the peptide pheromone responsible for competence induction. Here, we document that environmental stress-induced expression of the peptide pheromone competence-stimulating peptide (CSP) in the oral pathogen Streptococcus mutans. We showed that CSP is involved in the stress response and determined the CSP-induced regulon in S. mutans by microarray analysis. Contrary to pneumococcus, S. mutans responds to increased concentrations of CSP by cell lysis in only a fraction of the population. We have focused on the mechanism of cell lysis and have identified a novel bacteriocin as the ‘death effector’. Most importantly, we showed that this bacteriocin causes cell death via a novel mechanism of action: intracellular action against self. We have also identified the cognate bacteriocin immunity protein, which resides in a separate unlinked genetic locus to allow its differential regulation. The role of the lytic response in S. mutans competence is also discussed. Together, these findings reveal a novel autolytic pathway in S. mutans which may be involved in the dissemination of fitness-enhancing genes in the oral biofilm.
PMCID: PMC2771663  PMID: 19400789
14.  Atypical Roles for Campylobacter jejuni Amino Acid ATP Binding Cassette Transporter Components PaqP and PaqQ in Bacterial Stress Tolerance and Pathogen-Host Cell Dynamics▿  
Infection and Immunity  2009;77(11):4912-4924.
Campylobacter jejuni is a human pathogen causing severe diarrheal disease; however, our understanding of the survival of C. jejuni during disease and transmission remains limited. Amino acid ATP binding cassette (AA-ABC) transporters in C. jejuni have been proposed as important pathogenesis factors. We have investigated a novel AA-ABC transporter system, encoded by cj0467 to cj0469, by generating targeted deletions of cj0467 (the membrane transport component) and cj0469 (the ATPase component) in C. jejuni 81-176. The analyses described here have led us to designate these genes paqP and paqQ, respectively (pathogenesis-associated glutamine [q] ABC transporter permease [P] and ATPase [Q]). We found that loss of either component resulted in amino acid uptake defects, most notably diminished glutamine uptake. Altered resistance to a series of environmental and in vivo stresses was also observed: both mutants were hyperresistant to aerobic and organic peroxide stress, and while the ΔpaqP mutant was also hyperresistant to heat and osmotic shock, the ΔpaqQ mutant was more susceptible than the wild type to the latter two stresses. The ΔpaqP and ΔpaqQ mutants also displayed a surprising but statistically significant increase in recovery from macrophages and epithelial cells in short-term intracellular survival assays. Annexin V, 4′,6-diamidino-2-phenylindole (DAPI), and Western blot analyses revealed that macrophages infected with the ΔpaqP or ΔpaqQ mutant exhibited transient but significant decreases in cell death and extracellular signal-regulated kinase-mitogen-activated protein kinase activation compared to levels in wild-type-infected cells. The ΔpaqP mutant was not defective in either short-term or longer-term mouse colonization, consistent with its increased stress survival and diminished host cell damage phenotypes. Collectively, these results demonstrate a unique correlation of an AA-ABC transporter with bacterial stress tolerances and host cell responses to pathogen infection.
PMCID: PMC2772506  PMID: 19703978
15.  Inactivation of VicK Affects Acid Production and Acid Survival of Streptococcus mutans ▿ †  
Journal of Bacteriology  2009;191(20):6415-6424.
The regulation of acid production in and the tolerance to low pH of the cariogenic bacterium Streptococcus mutans have garnered considerable attention since both of these properties contribute substantially to the virulence of this organism. Frequent or prolonged exposure to acid end products, mainly lactic acid, that are present following the consumption of dietary sugars erodes the dental enamel, thereby initiating dental caries. Here we report the involvement of the S. mutans VicK sensor kinase in both the acidogenicity and the aciduricity of this bacterium. When cultures were supplemented with glucose, the glycolytic rate of a VicK null mutant was significantly decreased compared to the glycolytic rate of the wild type (P < 0.05), suggesting that there was impaired acid production. Not surprisingly, the VicK deletion mutant produced less lactic acid, while an acid tolerance response assay revealed that loss of VicK significantly enhanced the survival of S. mutans (P < 0.05). Compared to the survival rates of the wild type, the survival rates of the VicK-deficient mutant were drastically increased when cultures were grown at pH 3.5 with or without preexposure to a signal pH (pH 5.5). Global transcriptional analysis using DNA microarrays and S. mutans wild-type UA159 and VicK deletion mutant strains grown at neutral and low pH values revealed that loss of VicK significantly affected expression of 89 transcripts more than twofold at pH 5.5 (P < 0.001). The affected transcripts included genes with putative functions in transport and maintenance of cell membrane integrity. While our results provide insight into the acid-inducible regulon of S. mutans, here we imply a novel role for VicK in regulating intracellular pH homeostasis in S. mutans.
PMCID: PMC2753040  PMID: 19684142
16.  The LiaFSR System Regulates the Cell Envelope Stress Response in Streptococcus mutans▿ †  
Journal of Bacteriology  2009;191(9):2973-2984.
Maintaining cell envelope integrity is critical for bacterial survival, including bacteria living in a complex and dynamic environment such as the human oral cavity. Streptococcus mutans, a major etiological agent of dental caries, uses two-component signal transduction systems (TCSTSs) to monitor and respond to various environmental stimuli. Previous studies have shown that the LiaSR TCSTS in S. mutans regulates virulence traits such as acid tolerance and biofilm formation. Although not examined in streptococci, homologs of LiaSR are widely disseminated in Firmicutes and function as part of the cell envelope stress response network. We describe here liaSR and its upstream liaF gene in the cell envelope stress tolerance of S. mutans strain UA159. Transcriptional analysis established liaSR as part of the pentacistronic liaFSR-ppiB-pnpB operon. A survey of cell envelope antimicrobials revealed that mutants deficient in one or all of the liaFSR genes were susceptible to Lipid II cycle interfering antibiotics and to chemicals that perturbed the cell membrane integrity. These compounds induced liaR transcription in a concentration-dependent manner. Notably, under bacitracin stress conditions, the LiaFSR signaling system was shown to induce transcription of several genes involved in membrane protein synthesis, peptidoglycan biosynthesis, envelope chaperone/proteases, and transcriptional regulators. In the absence of an inducer such as bacitracin, LiaF repressed LiaR-regulated expression, whereas supplementing cultures with bacitracin resulted in derepression of liaSR. While LiaF appears to be an integral component of the LiaSR signaling cascade, taken collectively, we report a novel role for LiaFSR in sensing cell envelope stress and preserving envelope integrity in S. mutans.
PMCID: PMC2681809  PMID: 19251860
17.  Modification of Pseudomonas aeruginosa Pa5196 Type IV Pilins at Multiple Sites with d-Araf by a Novel GT-C Family Arabinosyltransferase, TfpW▿  
Journal of Bacteriology  2008;190(22):7464-7478.
Pseudomonas aeruginosa Pa5196 produces type IV pilins modified with unusual α1,5-linked d-arabinofuranose (α1,5-d-Araf) glycans, identical to those in the lipoarabinomannan and arabinogalactan cell wall polymers from Mycobacterium spp. In this work, we identify a second strain of P. aeruginosa, PA7, capable of expressing arabinosylated pilins and use a combination of site-directed mutagenesis, electrospray ionization mass spectrometry (MS), and electron transfer dissociation MS to identify the exact sites and extent of pilin modification in strain Pa5196. Unlike previously characterized type IV pilins that are glycosylated at a single position, those from strain Pa5196 were modified at multiple sites, with modifications of αβ-loop residues Thr64 and Thr66 being important for normal pilus assembly. Trisaccharides of α1,5-d-Araf were the principal modifications at Thr64 and Thr66, with additional mono- and disaccharides identified on Ser residues within the antiparallel beta sheet region of the pilin. TfpW was hypothesized to encode the pilin glycosyltransferase based on its genetic linkage to the pilin, weak similarity to membrane-bound GT-C family glycosyltransferases (which include the Mycobacterium arabinosyltransferases EmbA/B/C), and the presence of characteristic motifs. Loss of TfpW or mutation of key residues within the signature GT-C glycosyltransferase motif completely abrogated pilin glycosylation, confirming its involvement in this process. A Pa5196 pilA mutant complemented with other Pseudomonas pilins containing potential sites of modification expressed nonglycosylated pilins, showing that TfpW's pilin substrate specificity is restricted. TfpW is the prototype of a new type IV pilin posttranslational modification system and the first reported gram-negative member of the GT-C glycosyltransferase family.
PMCID: PMC2576659  PMID: 18805982
18.  The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis 
Microbiology (Reading, England)  2007;153(Pt 6):1799-1807.
In Streptococcus pneumoniae, competence and bacteriocin genes are controlled by two two-component systems, ComED and BlpRH, respectively. In Streptococcus mutans, both functions are controlled by the ComED system. Recent studies in S. mutans revealed a potential ComE binding site characterized by two 11 bp direct repeats shared by each of the bacteriocin genes responsive to the competence-stimulating peptide (CSP). Interestingly, this sequence was not found in the upstream region of the CSP structural gene comC. Since comC is suggested to be part of a CSP-responsive and ComE-dependent autoregulatory loop, it was of interest to determine how it was possible that the ComED system could simultaneously regulate bacteriocin expression and natural competence. Using the intergenic region IGS1499, shared by the CSP-responsive bacteriocin nlmC and comC, it was demonstrated that both genes are likely to be regulated by a bifunctional ComE. In a comE null mutant, comC gene expression was increased similarly to a fully induced wild-type. In contrast, nlmC gene expression was nearly abolished. Deletion of ComD exerted a similar effect on both genes to that observed with the comE null mutation. Electrophoretic mobility shift assays (EMSAs) with purified ComE revealed specific shift patterns dependent on the presence of one or both direct repeats in the nlmC–comC promoter region. The two direct repeats were also required for the promoter activity of both nlmC and comC. These results suggest that gene regulation of comC in S. mutans is fundamentally different from that reported for S. pneumoniae, which implicates a unique regulatory mechanism that allows the coordination of bacteriocin production with competence development.
PMCID: PMC2062498  PMID: 17526837
19.  Autoinducer-2-Regulated Genes in Streptococcus mutans UA159 and Global Metabolic Effect of the luxS Mutation▿ †  
Journal of Bacteriology  2007;190(1):401-415.
Autoinducer 2 (AI-2) is the only species-nonspecific autoinducer known in bacteria and is produced by both gram-negative and gram-positive organisms. Consequently, it is proposed to function as a universal quorum-sensing signal for interaction between bacterial species. AI-2 is produced as the by-product of a metabolic transformation carried out by the LuxS enzyme. To separate the metabolic function of the LuxS enzyme from the signaling role of AI-2, we carried out a global transcriptome analysis of a luxS null mutant culture of Streptococcus mutans UA159, an important cariogenic bacterium and a crucial component of the dental plaque biofilm community, in comparison to a luxS null mutant culture supplemented with chemically pure 4,5-dihydroxy-2,3-pentanedione, the precursor of AI-2. The data revealed fundamental changes in gene expression affecting 585 genes (30% of the genome) which could not be restored by the signal molecule AI-2 and are therefore not caused by quorum sensing but by lack of the transformation carried out by the LuxS enzyme in the activated methyl cycle. All functional classes of enzymes were affected, including genes known to be important for biofilm formation, bacteriocin synthesis, competence, and acid tolerance. At the same time, 59 genes were identified whose transcription clearly responded to the addition of AI-2. Some of them were related to protein synthesis, stress, and cell division. Three membrane transport proteins were upregulated which are not related to any of the known AI-2 transporters. Three transcription factors were identified whose transcription was stimulated repeatedly by AI-2 addition during growth. Finally, a global regulatory protein, the δ subunit of the RNA polymerase (rpoE), was induced 147-fold by AI-2, representing the largest differential gene expression observed. The data show that many phenotypes related to the luxS mutation cannot be ascribed to quorum sensing and have identified for the first time regulatory proteins potentially mediating AI-2-based signaling in gram-positive bacteria.
PMCID: PMC2223724  PMID: 17981981
20.  Involvement of the Detoxifying Enzyme Lactoylglutathione Lyase in Streptococcus mutans Aciduricity▿  
Journal of Bacteriology  2007;189(21):7586-7592.
Streptococcus mutans, a normal inhabitant of dental plaque, is considered a primary etiological agent of dental caries. Its main virulence factors are acidogenicity and aciduricity, the abilities to produce acid and to survive and grow at low pH, respectively. Metabolic processes are finely regulated following acid exposure in S. mutans. Proteome analysis of S. mutans demonstrated that lactoylglutathione lyase (LGL) was up-regulated during acid challenge. The LGL enzyme catalyzes the conversion of toxic methylglyoxal, derived from glycolysis, to S-d-lactoylglutathione. Methylglyoxal inhibits the growth of cells in all types of organisms. The current study aimed to investigate the relationship between LGL and aciduricity and acidogenicity in S. mutans. An S. mutans isogenic mutant defective in lgl (LGLKO) was created, and its growth kinetics were characterized. Insertional inactivation of lgl resulted in an acid-sensitive phenotype. However, the glycolytic rate at pH 5.0 was greater for LGLKO than for S. mutans UA159 wild-type cells. LGL was involved in the detoxification of methylglyoxal, illustrated by the absence of enzyme activity in LGLKO and the hypersensitivity of LGLKO to methylglyoxal, compared with UA159 (MIC of 3.9 and 15.6 mM, respectively). Transcriptional analysis of lgl conducted by quantitative real-time PCR revealed that lgl was up-regulated (approximately sevenfold) during the exponential growth phase compared with that in the stationary growth phase. Gene expression studies conducted at low pH demonstrated that lgl was induced during acidic growth (∼3.5-fold) and following acid adaptation (∼2-fold).This study demonstrates that in S. mutans, LGL functions in the detoxification of methylglyoxal, resulting in increased aciduricity.
PMCID: PMC2168736  PMID: 17720789
21.  Role for sagA and siaA in Quorum Sensing and Iron Regulation in Streptococcus pyogenes▿  
Infection and Immunity  2007;75(10):5011-5017.
Streptococcus pyogenes is a ubiquitous and versatile pathogen that causes a variety of infections with a wide range of severity. The versatility of this organism is due in part to its capacity to regulate virulence gene expression in response to the many environments that it encounters during an infection. We analyzed the expression of two potential virulence factors, sagA and siaA (also referred to as pel and htsA, respectively), in response to conditions of varying cell densities and iron concentrations. The sagA gene was up-regulated in conditioned medium from a wild-type strain but not from sagA-deficient mutants, and the gene was also up-regulated in the presence of streptolysin S (SLS), the gene product of sagA, thus indicating that this gene or its product is involved in density-dependent regulation of S. pyogenes. By comparison, siaA responded in a manner consistent with a role in iron acquisition since it was up-regulated under iron-restricted conditions. Although siaA expression was also up-regulated in the presence of SLS and in conditioned media from both wild-type and sagA-deficient mutants, this up-regulation was not growth phase dependent. We conclude that sagA encodes a quorum-sensing signaling molecule, likely SLS, and further support the notion that siaA is likely involved in iron acquisition.
PMCID: PMC2044554  PMID: 17635862
22.  The Streptococcus mutans vicX Gene Product Modulates gtfB/C Expression, Biofilm Formation, Genetic Competence, and Oxidative Stress Tolerance▿  
Journal of Bacteriology  2006;189(4):1451-1458.
Streptococcus mutans is considered one of the primary etiologic agents of dental caries. Previously, we characterized the VicRK two-component signal transduction system, which regulates multiple virulence factors of S. mutans. In this study, we focused on the vicX gene of the vicRKX tricistronic operon. To characterize vicX, we constructed a nonpolar deletion mutation in the vicX coding region in S. mutans UA159. The growth kinetics of the mutant (designated SmuvicX) showed that the doubling time was longer and that there was considerable sensitivity to paraquat-induced oxidative stress. Supplementing a culture of the wild-type UA159 strain with paraquat significantly increased the expression of vicX (P < 0.05, as determined by analysis of variance [ANOVA]), confirming the role of this gene in oxidative stress tolerance in S. mutans. Examination of mutant biofilms revealed architecturally altered cell clusters that were seemingly denser than the wild-type cell clusters. Interestingly, vicX-deficient cells grown in a glucose-supplemented medium exhibited significantly increased glucosyltransferase B/C (gtfB/C) expression compared with the expression in the wild type (P < 0.05, as determined by ANOVA). Moreover, a sucrose-dependent adhesion assay performed using an S. mutans GS5-derived vicX null mutant demonstrated that the adhesiveness of this mutant was enhanced compared with that of the parent strain and isogenic mutants of the parent strain lacking gtfB and/or gtfC. Also, disruption of vicX reduced the genetic transformability of the mutant approximately 10-fold compared with that of the parent strain (P < 0.05, as determined by ANOVA). Collectively, these findings provide insight into important phenotypes controlled by the vicX gene product that can impact S. mutans pathogenicity.
PMCID: PMC1797355  PMID: 17114248
23.  Glycosylation of Pseudomonas aeruginosa Strain Pa5196 Type IV Pilins with Mycobacterium-Like α-1,5-Linked d-Araf Oligosaccharides▿  
Journal of Bacteriology  2006;189(1):151-159.
Pseudomonas aeruginosa is a gram-negative bacterium that uses polar type IV pili for adherence to various materials and for rapid colonization of surfaces via twitching motility. Within the P. aeruginosa species, five distinct alleles encoding variants of the structural subunit PilA varying in amino acid sequence, length, and presence of posttranslational modifications have been identified. In this work, a combination of mass spectrometry and nuclear magnetic resonance spectroscopy was used to identify a novel glycan modification on the pilins of the group IV strain Pa5196. Group IV pilins continued to be modified in a lipopolysaccharide (wbpM) mutant of Pa5196, showing that, unlike group I strains, the pilins of group IV are not modified with the O-antigen unit of the background strain. Instead, the pilin glycan was determined to be an unusual homo-oligomer of α-1,5-linked d-arabinofuranose (d-Araf). This sugar is uncommon in prokaryotes, occurring mainly in the cell wall arabinogalactan and lipoarabinomannan (LAM) polymers of mycobacteria, including Mycobacterium tuberculosis and Mycobacterium leprae. Antibodies raised against M. tuberculosis LAM specifically identified the glycosylated pilins from Pa5196, confirming that the glycan is antigenically, as well as chemically, identical to those of Mycobacterium. P. aeruginosa Pa5196, a rapidly growing strain of low virulence that expresses large amounts of glycosylated type IV pilins on its surface, represents a genetically tractable model system for elucidation of alternate pathways for biosynthesis of d-Araf and its polymerization into mycobacterium-like α-1,5-linked oligosaccharides.
PMCID: PMC1797228  PMID: 17085575
24.  Identification of Group A Streptococcus Antigenic Determinants Upregulated In Vivo  
Infection and Immunity  2005;73(9):6026-6038.
Group A Streptococcus (GAS) causes a range of diseases in humans, from mild noninvasive infections to severe invasive infections. The molecular basis for the varying severity of disease remains unclear. We identified genes expressed during invasive disease using in vivo-induced antigen technology (IVIAT), applied for the first time in a gram-positive organism. Convalescent-phase sera from patients with invasive disease were pooled, adsorbed against antigens derived from in vitro-grown GAS, and used to screen a GAS genomic expression library. A murine model of invasive GAS disease was included as an additional source of sera for screening. Sequencing DNA inserts from clones reactive with both human and mouse sera indicated 16 open reading frames with homology to genes involved in metabolic activity to genes of unknown function. Of these, seven genes were assessed for their differential expression by quantitative real-time PCR both in vivo, utilizing a murine model of invasive GAS disease, and in vitro at different time points of growth. Three gene products—a putative penicillin-binding protein 1A, a putative lipoprotein, and a conserved hypothetical protein homologous to a putative translation initiation inhibitor in Vibrio vulnificus—were upregulated in vivo, suggesting that these genes play a role during invasive disease.
PMCID: PMC1231132  PMID: 16113323
25.  Transport and Metabolism of Citrate by Streptococcus mutans 
Journal of Bacteriology  2005;187(13):4451-4456.
Streptococcus mutans, a normal inhabitant of dental plaque, is considered a primary etiological agent of dental caries. Two virulence determinants of S. mutans are its acidogenicity and aciduricity (the ability to produce acid and the ability to survive and grow at low pH, respectively). Citric acid is ubiquitous in nature; it is a component of fruit juices, bones, and teeth. In lactic acid bacteria citrate transport has been linked to increased survival in acidic conditions. We identified putative citrate transport and metabolism genes in S. mutans, which led us to investigate citrate transport and metabolism. Our goals in this study were to determine the mechanisms of citrate transport and metabolism in S. mutans and to examine whether citrate modulates S. mutans aciduricity. Radiolabeled citrate was used during citrate transport to identify citrate metal ion cofactors, and thin-layer chromatography was used to identify metabolic end products of citrate metabolism. S. mutans was grown in medium MM4 with different citrate concentrations and pH values, and the effects on the growth rate and cell survival were monitored. Intracellular citrate inhibited the growth of the bacteria, especially at low pH. The most effective cofactor for citrate uptake by S. mutans was Fe3+. The metabolic end product of citrate metabolism was aspartate, and a citrate transporter mutant was more citrate tolerant than the parent.
PMCID: PMC1151779  PMID: 15968054

Results 1-25 (36)