PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  In vitro Manganese-Dependent Cross-Talk between Streptococcus mutans VicK and GcrR: Implications for Overlapping Stress Response Pathways 
PLoS ONE  2014;9(12):e115975.
Streptococcus mutans, a major acidogenic component of the dental plaque biofilm, has a key role in caries etiology. Previously, we demonstrated that the VicRK two-component signal transduction system modulates biofilm formation, oxidative stress and acid tolerance responses in S. mutans. Using in vitro phosphorylation assays, here we demonstrate for the first time, that in addition to activating its cognate response regulator protein, the sensor kinase, VicK can transphosphorylate a non-cognate stress regulatory response regulator, GcrR, in the presence of manganese. Manganese is an important micronutrient that has been previously correlated with caries incidence, and which serves as an effector of SloR-mediated metalloregulation in S. mutans. Our findings supporting regulatory effects of manganese on the VicRK, GcrR and SloR, and the cross-regulatory networks formed by these components are more complex than previously appreciated. Using DNaseI footprinting we observed overlapping DNA binding specificities for VicR and GcrR in native promoters, consistent with these proteins being part of the same transcriptional regulon. Our results also support a role for SloR as a positive regulator of the vicRK two component signaling system, since its transcription was drastically reduced in a SloR-deficient mutant. These findings demonstrate the regulatory complexities observed with the S. mutans manganese-dependent response, which involves cross-talk between non-cognate signal transduction systems (VicRK and GcrR) to modulate stress response pathways.
doi:10.1371/journal.pone.0115975
PMCID: PMC4275253  PMID: 25536343
2.  A Biochemical Characterization of the DNA Binding Activity of the Response Regulator VicR from Streptococcus mutans 
PLoS ONE  2014;9(9):e108027.
Two-component systems (TCSs) are ubiquitous among bacteria and are among the most elegant and effective sensing systems in nature. They allow for efficient adaptive responses to rapidly changing environmental conditions. In this study, we investigated the biochemical characteristics of the Streptococcus mutans protein VicR, an essential response regulator that is part of the VicRK TCS. We dissected the DNA binding requirements of the recognition sequences for VicR in its phosphorylated and unphosphorylated forms. In doing so, we were able to make predictions for the expansion of the VicR regulon within S. mutans. With the ever increasing number of bacteria that are rapidly becoming resistant to even the antibiotics of last resort, TCSs such as the VicRK provide promising targets for a new class of antimicrobials.
doi:10.1371/journal.pone.0108027
PMCID: PMC4168254  PMID: 25229632
3.  Characterization of DNA Binding Sites of the ComE Response Regulator from Streptococcus mutans▿† 
Journal of Bacteriology  2011;193(14):3642-3652.
In Streptococcus mutans, both competence and bacteriocin production are controlled by ComC and the ComED two-component signal transduction system. Recent studies of S. mutans suggested that purified ComE binds to two 11-bp direct repeats in the nlmC-comC promoter region, where ComE activates nlmC and represses comC. In this work, quantitative binding studies and DNase I footprinting analysis were performed to calculate the equilibrium dissociation constant and further characterize the binding site of ComE. We found that ComE protects sequences inclusive of both direct repeats, has an equilibrium dissociation constant in the nanomolar range, and binds to these two direct repeats cooperatively. Furthermore, similar direct repeats were found upstream of cslAB, comED, comX, ftf, vicRKX, gtfD, gtfB, gtfC, and gbpB. Quantitative binding studies were performed on each of these sequences and showed that only cslAB has a similar specificity and high affinity for ComE as that seen with the upstream region of comC. A mutational analysis of the binding sequences showed that ComE does not require both repeats to bind DNA with high affinity, suggesting that single site sequences in the genome may be targets for ComE-mediated regulation. Based on the mutational analysis and DNase I footprinting analysis, we propose a consensus ComE binding site, TCBTAAAYSGT.
doi:10.1128/JB.00155-11
PMCID: PMC3133340  PMID: 21602345
4.  Regulation of ciaXRH Operon Expression and Identification of the CiaR Regulon in Streptococcus mutans▿  
Journal of Bacteriology  2010;192(18):4669-4679.
The ciaRH operon in Streptococcus mutans contains 3 contiguous genes, ciaXRH. Unlike the CiaRH system in other streptococci, only the ciaH-null mutant displays defective phenotypes, while the ciaR-null mutant behaves like the wild type. The objective of this study was to determine the mechanism of this unusual property. We demonstrate that the ciaH mutation caused a >20-fold increase in ciaR transcript synthesis. A ciaRH double deletion reversed the ciaH phenotype, suggesting that overexpressed ciaR might be responsible for the observed ciaH phenotypes. When ciaR was forced to be overexpressed by a transcriptional fusion to the ldh promoter in the wild-type background, the same ciaH phenotypes were restored, confirming the involvement of overexpressed ciaR in the ciaH phenotypes. The ciaH mutation and ciaR overexpression also caused transcriptional alterations in 100 genes, with 15 genes upregulated >5-fold. Bioinformatics analysis identified a putative CiaR regulon consisting of 8 genes/operons, including the ciaXRH operon itself, all of which were upregulated. In vitro footprinting on 4 of the 8 promoters revealed a protected region of 26 to 28 bp encompassing two direct repeats, NTTAAG-n5-WTTAAG, 10 bp upstream of the −10 region, indicating direct binding of the CiaR protein to these promoters. Taken together, we conclude that overexpressed CiaR, as a result of either ciaH deletion or forced expression from a constitutive promoter, is a mediator in the CiaH-regulated phenotypes.
doi:10.1128/JB.00556-10
PMCID: PMC2937423  PMID: 20639331

Results 1-4 (4)