Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Insights into the Mechanisms and Mediators of the Effects of Air Pollution Exposure on Blood Pressure and Vascular Function in Healthy Humans 
Hypertension  2009;54(3):659-667.
Fine particulate matter air pollution plus ozone impairs vascular function and raises diastolic blood pressure. We aimed to determine the mechanism and air pollutant responsible. The effects of pollution on heart rate variability, blood pressure, biomarkers, and brachial flow-mediated dilatation were determined in 2 randomized, double-blind, cross-over studies. In Ann Arbor, 50 subjects were exposed to fine particles (150 μg/m3) + ozone (120 ppb) for 2 hours on 3 occasions with pretreatments of an endothelin antagonist (Bosentan 250 mg), anti-oxidant (Vitamin C 2 g), or placebo. In Toronto, 31 subjects were exposed to 4 different conditions (particles + ozone, particles, ozone, and filtered air). In Toronto, diastolic blood pressure significantly increased (2.9 and 3.6 mm Hg) only during particle-containing exposures in association with particulate matter concentration and reductions in heart rate variability. Flow-mediated dilatation significantly decreased (2.0 and 2.9%) only 24 hours after particle-containing exposures in association with particulate matter concentration and increases in blood tumor necrosis factor-alpha. In Ann Arbor, diastolic blood pressure significantly similarly increased during all exposures (2.5 - 4.0 mm Hg), a response not mitigated by pretreatments. Flow-mediated dilatation remained unaltered. Particulate matter, not ozone, was responsible for increasing diastolic blood pressure during air pollution inhalation most plausibly by instigating acute autonomic imbalance. Only particles from urban Toronto additionally impaired endothelial function likely via slower proinflammatory pathways. Our findings demonstrate credible mechanisms whereby fine particulate matter could trigger acute cardiovascular events and that aspects of exposure location may be an important determinant of the health consequences.
PMCID: PMC3706996  PMID: 19620518
hypertension; endothelium; sympathetic nervous system; inflammation; oxidative stress
2.  DNA Hypomethylation, Ambient Particulate Matter, and Increased Blood Pressure: Findings From Controlled Human Exposure Experiments 
Short‐term exposures to fine (<2.5 μm aerodynamic diameter) ambient particulate‐matter (PM) have been related with increased blood pressure (BP) in controlled‐human exposure and community‐based studies. However, whether coarse (2.5 to 10 μm) PM exposure increases BP is uncertain. Recent observational studies have linked PM exposures with blood DNA hypomethylation, an epigenetic alteration that activates inflammatory and vascular responses. No experimental evidence is available to confirm those observational data and demonstrate the relations between PM, hypomethylation, and BP.
Methods and Results
We conducted a cross‐over trial of controlled‐human exposure to concentrated ambient particles (CAPs). Fifteen healthy adult participants were exposed for 130 minutes to fine CAPs, coarse CAPs, or HEPA‐filtered medical air (control) in randomized order with ≥2‐week washout. Repetitive‐element (Alu, long interspersed nuclear element‐1 [LINE‐1]) and candidate‐gene (TLR4, IL‐12, IL‐6, iNOS) blood methylation, systolic and diastolic BP were measured pre‐ and postexposure. After adjustment for multiple comparisons, fine CAPs exposure lowered Alu methylation (β‐standardized=−0.74, adjusted‐P=0.03); coarse CAPs exposure lowered TLR4 methylation (β‐standardized=−0.27, adjusted‐P=0.04). Both fine and coarse CAPs determined significantly increased systolic BP (β=2.53 mm Hg, P=0.001; β=1.56 mm Hg, P=0.03, respectively) and nonsignificantly increased diastolic BP (β=0.98 mm Hg, P=0.12; β=0.82 mm Hg, P=0.11, respectively). Decreased Alu and TLR4 methylation was associated with higher postexposure DBP (β‐standardized=0.41, P=0.04; and β‐standardized=0.84, P=0.02; respectively). Decreased TLR4 methylation was associated with higher postexposure SBP (β‐standardized=1.45, P=0.01).
Our findings provide novel evidence of effects of coarse PM on BP and confirm effects of fine PM. Our results provide the first experimental evidence of PM‐induced DNA hypomethylation and its correlation to BP.
PMCID: PMC3698788  PMID: 23782920
air pollution; blood pressure; DNA methylation; epigenetics; mediation
3.  Controlled Exposure Study of Air Pollution and T-Wave Alternans in Volunteers without Cardiovascular Disease 
Environmental Health Perspectives  2012;120(8):1157-1161.
Background: Epidemiological studies have assessed T-wave alternans (TWA) as a possible mechanism of cardiac arrhythmias related to air pollution in high-risk subjects and have reported associations with increased TWA magnitude.
Objective: In this controlled human exposure study, we assessed the impact of exposure to concentrated ambient particulate matter (CAP) and ozone (O3) on T-wave alternans in resting volunteers without preexisting cardiovascular disease.
Methods: Seventeen participants without preexisting cardiovascular disease were randomized to filtered air (FA), CAP (150 μg/m3), O3 (120 ppb), or combined CAP + O3 exposures for 2 hr. Continuous electrocardiograms (ECGs) were recorded at rest and T-wave alternans (TWA) was computed by modified moving average analysis with QRS alignment for the artifact-free intervals of 20 beats along the V2 and V5 leads. Exposure-induced changes in the highest TWA magnitude (TWAMax) were estimated for the first and last 5 min of each exposure (TWAMax_Early and TWAMax_Late respectively). ΔTWAMax (Late–Early) were compared among exposure groups using analysis of variance.
Results: Mean ± SD values for ΔTWAMax were –2.1 ± 0.4, –2.7 ± 1.1, –1.9 ± 1.5, and –1.2 ± 1.5 in FA, CAP, O3, and CAP + O3 exposure groups, respectively. No significant differences were observed between pollutant exposures and FA.
Conclusion: In our study of 17 volunteers who had no preexisting cardiovascular disease, we did not observe significant changes in T-wave alternans after 2-hr exposures to CAP, O3, or combined CAP + O3. This finding, however, does not preclude the possibility of pollution-related effects on TWA at elevated heart rates, such as during exercise, or the possibility of delayed responses.
PMCID: PMC3440072  PMID: 22552907
air pollution; arrhythmia; controlled exposure; ozone; particulate matter; T-wave alternans
4.  Exposure Assessment in Cohort Studies of Childhood Asthma 
Environmental Health Perspectives  2010;119(5):591-597.
The environment is suspected to play an important role in the development of childhood asthma. Cohort studies are a powerful observational design for studying exposure–response relationships, but their power depends in part upon the accuracy of the exposure assessment.
The purpose of this paper is to summarize and discuss issues that make accurate exposure assessment a challenge and to suggest strategies for improving exposure assessment in longitudinal cohort studies of childhood asthma and allergies.
Data synthesis
Exposures of interest need to be prioritized, because a single study cannot measure all potentially relevant exposures. Hypotheses need to be based on proposed mechanisms, critical time windows for effects, prior knowledge of physical, physiologic, and immunologic development, as well as genetic pathways potentially influenced by the exposures. Modifiable exposures are most important from the public health perspective. Given the interest in evaluating gene–environment interactions, large cohort sizes are required, and planning for data pooling across independent studies is critical. Collection of additional samples, possibly through subject participation, will permit secondary analyses. Models combining air quality, environmental, and dose data provide exposure estimates across large cohorts but can still be improved.
Exposure is best characterized through a combination of information sources. Improving exposure assessment is critical for reducing measurement error and increasing power, which increase confidence in characterization of children at risk, leading to improved health outcomes.
PMCID: PMC3094407  PMID: 21081299
childhood asthma; cohort studies; exposure assessment
5.  Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma 
Respiratory Research  2011;12(1):19.
Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR.
To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization.
Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models.
This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution, such as fine particles and ozone, which are two of the major contributors to smog.
PMCID: PMC3037317  PMID: 21291525
7.  Human Neutrophil Peptides and Phagocytic Deficiency in Bronchiectatic Lungs 
Rationale: A well-known clinical paradox is that severe bacterial infections persist in the lungs of patients with cystic fibrosis (CF) despite the abundance of polymorphonuclear neutrophils (PMN) and the presence of a high concentration of human neutrophil peptides (HNP), both of which are expected to kill the bacteria but fail to do so. The mechanisms remain unknown.
Objectives: This study examined several possible mechanisms to understand this paradox.
Methods: PMN were isolated from sputum and blood of subjects with and without CF or non-CF bronchiectasis for phagocytic assays. HNP isolated from patients with CF were used to stimulate healthy PMN followed by phagocytic tests.
Measurements and Main Results: PMN isolated from the sputum of the bronchiectatic patients display defective phagocytosis that correlated with high concentrations of HNP in the lung. When healthy PMN were incubated with HNP, decreased phagocytic capacity was observed in association with depressed surface Fcγ RIII, actin-filament remodeling, enhanced intracellular Ca2+, and degranulation. Treatment of PMN with an intracellular Ca2+ blocker or α1-proteinase inhibitor to attenuate the activity of HNP largely prevented the HNP-induced phagocytic deficiency. Intratracheal instillation of HNP in Pallid mice (genetically deficient in α1-proteinase inhibitor) resulted in a greater PMN lung infiltration and phagocytic deficiency compared with wild-type mice.
Conclusions: HNP or PMN alone exert antimicrobial ability, which was lost as a result of their interaction. These effects of HNP may help explain the clinical paradox seen in patients with inflammatory lung diseases, suggesting HNP as a novel target for clinical therapy.
PMCID: PMC2714819  PMID: 19406984
inflammation; innate immunity; lung injury
8.  Baseline Repeated Measures from Controlled Human Exposure Studies: Associations between Ambient Air Pollution Exposure and the Systemic Inflammatory Biomarkers IL-6 and Fibrinogen 
Environmental Health Perspectives  2009;118(1):120-124.
Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardiovascular disease.
We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies.
In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5). Linear mixed-model regression determined the effects of the pollutants on systemic IL-6 and fibrinogen. Effect modification by season was considered.
We observed a positive association between IL-6 and O3 [0.31 SD per O3 interquartile range (IQR); 95% confidence interval (CI), 0.08–0.54] and between IL-6 and SO2 (0.25 SD per SO2 IQR; 95% CI, 0.06–0.43). We observed the strongest effects using 4-day moving averages. Responses to pollutants varied by season and tended to be higher in the summer, particularly for O3 and PM2.5. Fibrinogen was not associated with pollution.
This study demonstrates a significant association between ambient pollutant levels and baseline levels of systemic IL-6. These findings have potential implications for controlled human exposure studies. Future research should consider whether ambient pollution exposure before chamber exposure modifies IL-6 response.
PMCID: PMC2831955  PMID: 20056584
air pollution; epidemiology; fibrinogen; inflammation; interleukin-6
9.  Autonomic Effects of Controlled Fine Particulate Exposure in Young Healthy Adults: Effect Modification by Ozone 
Environmental Health Perspectives  2009;117(8):1287-1292.
Human controlled-exposure studies have assessed the impact of ambient fine particulate matter on cardiac autonomic function measured by heart rate variability (HRV), but whether these effects are modified by concomitant ozone exposure remains unknown.
In this study we assessed the impact of O3 and particulate matter exposure on HRV in humans.
In a crossover design, 50 subjects (19–48 years of age) were randomized to 2-hr controlled exposures to filtered air (FA), concentrated ambient particles (CAPs), O3, or combined CAPs and ozone (CAPs + O3). The primary end point was change in HRV between the start and end of exposure. Secondary analyses included blood pressure (BP) responses, and effect modification by asthmatic status.
Achieved mean CAPs and O3 exposure concentrations were 121.6 ± 48.0 μg/m3 and 113.9 ± 6.6 ppb, respectively. In a categorical analysis, exposure had no consistent effect on HRV indices. However, the dose–response relationship between CAPs mass concentration and HRV indices seemed to vary depending on the presence of O3. This heterogeneity was statistically significant for the low-frequency component of HRV (p = 0.02) and approached significance for the high-frequency component and time-domain measures of HRV. Exposure to CAPs + O3 increased diastolic BP by 2.0 mmHg (SE, 1.2; p = 0.02). No other statistically significant changes in BP were observed. Asthmatic status did not modify these effects.
The potentiation by O3 of CAPs effects on diastolic BP and possibly HRV is of small magnitude in young adults. Further studies are needed to assess potential effects in more vulnerable populations.
PMCID: PMC2721874  PMID: 19672410
asthma; blood pressure; heart rate variability; ozone; particulate matter
10.  A novel application of capnography during controlled human exposure to air pollution 
The objective was to determine the repeatability and stability of capnography interfaced with human exposure facility.
Capnographic wave signals were obtained from five healthy volunteers exposed to particle-free, filtered air during two consecutive 5 min intervals, 10 min apart, within the open and then the sealed and operational human exposure facility (HEF). Using a customized setup comprised of the Oridion Microcap® portable capnograph, DA converter and AD card, the signal was acquired and saved as an ASCII file for subsequent processing. The minute ventilation (VE), respiratory rate (RR) and expiratory tidal volume (VTE) were recorded before and after capnographic recording and then averaged. Each capnographic tracing was analyzed for acceptable waves. From each recorded interval, 8 to 19 acceptable waves were selected and measured. The following wave parameters were obtained: total length and length of phase II and III, slope of phase II and III, area under the curve and area under phase III. In addition, we recorded signal measures including the mean, standard deviation, mode, minimum, maximum – which equals end-tidal CO2 (EtCO2), zero-corrected maximum and true RMS.
Statistical analysis using a paired t-test for means showed no statistically significant changes of any wave parameters and wave signal measures, corrected for RR and VTE, comparing the measures when the HEF was open vs. sealed and operational. The coefficients of variation of the zero-corrected and uncorrected EtCO2, phase II absolute difference, signal mean, standard deviation and RMS were less than 10% despite a sub-atmospheric barometric pressure, and slightly higher temperature and relative humidity within the HEF when operational.
We showed that a customized setup for the acquisition and processing of the capnographic wave signal, interfaced with HEF was stable and repeatable. Thus, we expect that analysis of capnographic waves in controlled human air pollution exposure studies is a feasible tool for characterization of cardio-pulmonary effects of such exposures.
PMCID: PMC1624835  PMID: 17049094
11.  Acute Blood Pressure Responses in Healthy Adults During Controlled Air Pollution Exposures 
Environmental Health Perspectives  2005;113(8):1052-1055.
Exposure to air pollution has been shown to cause arterial vasoconstriction and alter autonomic balance. Because these biologic responses may influence systemic hemodynamics, we investigated the effect of air pollution on blood pressure (BP). Responses during 2-hr exposures to concentrated ambient fine particles (particulate matter < 2.5 μm in aerodynamic diameter; PM2.5) plus ozone (CAP+O3) were compared with those of particle-free air (PFA) in 23 normotensive, non-smoking healthy adults. Mean concentrations of PM2.5 were 147 ± 27 versus 2 ± 2 μg/m3, respectively, and those of O3 were 121 ± 3 versus 8 ± 5 ppb, respectively (p < 0.0001 for both). A significant increase in diastolic BP (DBP) was observed at 2 hr of CAP+O3 [median change, 6 mm Hg (9.3%); binomial 95% confidence interval (CI), 0 to 11; p = 0.013, Wilcoxon signed rank test] above the 0-hr value. This increase was significantly different (p = 0.017, unadjusted for basal BP) from the small 2-hr change during PFA (median change, 1 mm Hg; 95% CI, −2 to 4; p = 0.24). This prompted further investigation of the CAP+O3 response, which showed a strong association between the 2-hr change in DBP (and mean arterial pressure) and the concentration of the organic carbon fraction of PM2.5 (r = 0.53, p < 0.01; r = 0.56, p < 0.01, respectively) but not with total PM2.5 mass (r ≤ 0.25, p ≥ 0.27). These findings suggest that exposure to environmentally relevant concentrations of PM2.5 and O3 rapidly increases DBP. The magnitude of BP change is associated with the PM2.5 carbon content. Exposure to vehicular traffic may provide a common link between our observations and previous studies in which traffic exposure was identified as a potential risk factor for cardiovascular disease.
PMCID: PMC1280348  PMID: 16079078
air pollution; blood pressure; hypertension; ozone; particulate matter; PM2.5

Results 1-11 (11)