Search tips
Search criteria

Results 1-25 (70)

Clipboard (0)

Select a Filter Below

Year of Publication
2.  Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles 
Monatomic (Fe, Co) and bimetallic (FePt and CoPt) nanoparticles were prepared by exploiting the self-organization of precursor loaded reverse micelles. Achievements and limitations of the preparation approach are critically discussed. We show that self-assembled metallic nanoparticles can be prepared with diameters d = 2–12 nm and interparticle distances D = 20–140 nm on various substrates. Structural, electronic and magnetic properties of the particle arrays were characterized by several techniques to give a comprehensive view of the high quality of the method. For Co nanoparticles, it is demonstrated that magnetostatic interactions can be neglected for distances which are at least 6 times larger than the particle diameter. Focus is placed on FePt alloy nanoparticles which show a huge magnetic anisotropy in the L10 phase, however, this is still less by a factor of 3–4 when compared to the anisotropy of the bulk counterpart. A similar observation was also found for CoPt nanoparticles (NPs). These results are related to imperfect crystal structures as revealed by HRTEM as well as to compositional distributions of the prepared particles. Interestingly, the results demonstrate that the averaged effective magnetic anisotropy of FePt nanoparticles does not strongly depend on size. Consequently, magnetization stability should scale linearly with the volume of the NPs and give rise to a critical value for stability at ambient temperature. Indeed, for diameters above 6 nm such stability is observed for the current FePt and CoPt NPs. Finally, the long-term conservation of nanoparticles by Au photoseeding is presented.
PMCID: PMC3045932  PMID: 21977392
Co; CoPt; core–shell particles; FePt; magnetic anisotropy; magnetic particles; plasma etching; reverse micelles; self-assembly
4.  Synthesis of embedded Au nanostructures by ion irradiation: influence of ion induced viscous flow and sputtering 
The ion-irradiation induced synthesis of embedded Au nanoparticles (NPs) into glass from islands of Au on a glass substrate is studied in the context of recoiling atoms, sputtering and viscous flow. Cross sectional transmission electron microscopy studies revealed the formation of Au NPs embedded in the glass substrates by the 50 keV Si− ion irradiation of irregularly shaped Au nanostructures on the glass surfaces at a fluence of 3 × 1016 ions/cm2. The depth profiles of Au in the samples were obtained from high-resolution Rutherford backscattering spectrometry studies. The results from TRIDYN simulation reveal the role of various ion-induced processes during the synthesis of the embedded Au NPs, viz. sputtering and recoiling atoms. Simulation and experimental results suggest that the viscous flow is one of the major factors that are responsible for the embedding of Au nanoparticles into the glass substrate.
PMCID: PMC3944145  PMID: 24605276
embedded nanoparticles; ion beam irradiation; recoil implantation
5.  Many-body effects in semiconducting single-wall silicon nanotubes 
The electronic and optical properties of semiconducting silicon nanotubes (SiNTs) are studied by means of the many-body Green’s function method, i.e., GW approximation and Bethe–Salpeter equation. In these studied structures, i.e., (4,4), (6,6) and (10,0) SiNTs, self-energy effects are enhanced giving rise to large quasi-particle (QP) band gaps due to the confinement effect. The strong electron−electron (e−e) correlations broaden the band gaps of the studied SiNTs from 0.65, 0.28 and 0.05 eV at DFT level to 1.9, 1.22 and 0.79 eV at GW level. The Coulomb electron−hole (e−h) interactions significantly modify optical absorption properties obtained at noninteracting-particle level with the formation of bound excitons with considerable binding energies (of the order of 1 eV) assigned: the binding energies of the armchair (4,4), (6,6) and zigzag (10,0) SiNTs are 0.92, 1.1 and 0.6 eV, respectively. Results in this work are useful for understanding the physics and applications in silicon-based nanoscale device components.
PMCID: PMC3896257  PMID: 24455458
Bethe–Salpeter equation; excitons; GW approximation; many body effects; silicon
6.  Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM 
In order to resolve substrate effects on the adlayer structure and structure formation and on the substrate–adsorbate and adsorbate–adsorbate interactions, we investigated the adsorption of thin films of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium-bis(trifluoromethylsulfonyl)imide [BMP][TFSA] on the close-packed Ag(111) and Au(111) surfaces by scanning tunneling microscopy, under ultra high vacuum (UHV) conditions in the temperature range between about 100 K and 293 K. At room temperature, highly mobile 2D liquid adsorbate phases were observed on both surfaces. At low temperatures, around 100 K, different adsorbed IL phases were found to coexist on these surfaces, both on silver and gold: a long-range ordered (‘2D crystalline’) phase and a short-range ordered (‘2D glass’) phase. Both phases exhibit different characteristics on the two surfaces. On Au(111), the surface reconstruction plays a major role in the structure formation of the 2D crystalline phase. In combination with recent density functional theory calculations, the sub-molecularly resolved STM images allow to clearly discriminate between the [BMP]+ cation and [TFSA]− anion.
PMCID: PMC3869266  PMID: 24367760
adsorption; Ag; Au; [BMP][TFSA]; ionic liquids; scanning tunnelling microscopy; self-assembly
7.  Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale 
The basic idea of using hexagonally ordered arrays of Au nanoparticles (NP) on top of a given substrate as a mask for the subsequent anisotropic etching in order to fabricate correspondingly ordered arrays of nanopillars meets two serious obstacles: The position of the NP may change during the etching process and, thus, the primary pattern of the mask deteriorates or is completely lost. Furthermore, the NP are significantly eroded during etching and, consequently, the achievable pillar height is strongly restricted. The present work presents approaches on how to get around both problems. For this purpose, arrays of Au NPs (starting diameter 12 nm) are deposited on top of silica substrates by applying diblock copolymer micelle nanolithography (BCML). It is demonstrated that evaporated octadecyltrimethoxysilane (OTMS) layers act as stabilizer on the NP position, which allows for an increase of their size up to 50 nm by an electroless photochemical process. In this way, ordered arrays of silica nanopillars are obtained with maximum heights of 270 nm and aspect ratios of 5:1. Alternatively, the NP position can be fixed by a short etching step with negligible mask erosion followed by cycles of growing and reactive ion etching (RIE). In that case, each cycle is started by photochemically re-growing the Au NP mask and thereby completely compensating for the erosion due to the previous cycle. As a result of this mask repair method, arrays of silica nanopillar with heights up to 680 nm and aspect ratios of 10:1 are fabricated. Based on the given recipes, the approach can be applied to a variety of materials like silicon, silicon oxide, and silicon nitride.
PMCID: PMC3869346  PMID: 24367758
Au nanoparticles; block copolymer micellar lithography; photochemical growth; reactive ion etching; self-assembly
8.  Synthesis and electrochemical performance of Li2Co1− xMxPO4F (M = Fe, Mn) cathode materials 
In the search for high-energy materials, novel 3D-fluorophosphates, Li2Co1− xFexPO4F and Li2Co1− xMnxPO4F, have been synthesized. X-ray diffraction and scanning electron microscopy have been applied to analyze the structural and morphological features of the prepared materials. Both systems, Li2Co1− xFexPO4F and Li2Co1− xMnxPO4F, exhibited narrow ranges of solid solutions: x ≤ 0.3 and x ≤ 0.1, respectively. The Li2Co0.9Mn0.1PO4F material demonstrated a reversible electrochemical performance with an initial discharge capacity of 75 mA·h·g−1 (current rate of C/5) upon cycling between 2.5 and 5.5 V in 1 M LiBF4/TMS electrolyte. Galvanostatic measurements along with cyclic voltammetry supported a single-phase de/intercalation mechanism in the Li2Co0.9Mn0.1PO4F material.
PMCID: PMC3869263  PMID: 24367755
energy related; fluorophosphates; high-energy cathode materials; high-voltage electrolyte; Li-ion batteries; nanomaterials; reversible capacity
9.  Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O2 cells 
The often observed and still unexplained phenomenon of the growth of lithium peroxide crystal clusters during the discharge of Li–O2 cells is likely to happen because of self-assembling Li2O2 platelets that nucleate homogeneously right after the intermediate formation of superoxide ions by a single-electron oxygen reduction reaction (ORR). This feature limits the rechargeability of Li–O2 cells, but at the same time it can be beneficial for both capacity improvement and gain in recharge rate if a proper liquid phase mediator can be found.
PMCID: PMC3869314  PMID: 24367744
lithium–air batteries; lithium peroxide; oxygen reduction reaction
10.  Influence of particle size and fluorination ratio of CFx precursor compounds on the electrochemical performance of C–FeF2 nanocomposites for reversible lithium storage 
Systematical studies of the electrochemical performance of CFx-derived carbon–FeF2 nanocomposites for reversible lithium storage are presented. The conversion cathode materials were synthesized by a simple one-pot synthesis, which enables a reactive intercalation of nanoscale Fe particles in a CFx matrix, and the reaction of these components to an electrically conductive C–FeF2 compound. The pretreatment and the structure of the utilized CFx precursors play a crucial role in the synthesis and influence the electrochemical behavior of the conversion cathode material. The particle size of the CFx precursor particles was varied by ball milling as well as by choosing different C/F ratios. The investigations led to optimized C–FeF2 conversion cathode materials that showed specific capacities of 436 mAh/g at 40 °C after 25 cycles. The composites were characterized by Raman spectroscopy, X-Ray diffraction measurements, electron energy loss spectroscopy and TEM measurements. The electrochemical performances of the materials were tested by galvanostatic measurements.
PMCID: PMC3869371  PMID: 24367738
conducting carbon; conversion material; enregy-related; graphite fluoride; lithium battery; iron fluoride
11.  A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries 
A carbon-encapsulated Fe3O4 nanocomposite was prepared by a simple one-step pyrolysis of iron pentacarbonyl without using any templates, solvents or surfactants. The structure and morphology of the nanocomposite was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis and Raman spectroscopy. Fe3O4 nanoparticles are dispersed intimately in a carbon framework. The nanocomposite exhibits well constructed core–shell and nanotube structures, with Fe3O4 cores and graphitic shells/tubes. The as-synthesized material could be used directly as anode in a lithium-ion cell and demonstrated a stable capacity, and good cyclic and rate performances.
PMCID: PMC3817607  PMID: 24205466
electrochemistry; iron oxide; lithium-ion battery; nanoparticles; pyrolysis
12.  Optimization of solution-processed oligothiophene:fullerene based organic solar cells by using solvent additives 
The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu 4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu 4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu 4:PC61BM solar cell with its vacuum-processed DCV5T-Bu 4:C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.
PMCID: PMC3817626  PMID: 24205464
active layer morphology; comparison vacuum-processed solar cells; maximum solubility; oligothiophene; solar cells; solution-processed bulk heterojunction; solvent additives
13.  Energy-related nanomaterials 
PMCID: PMC3817629  PMID: 24205463
energy related; nanomaterials
14.  Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O2 batteries 
Aprotic rechargeable Li–O2 batteries are currently receiving considerable interest because they can possibly offer significantly higher energy densities than conventional Li-ion batteries. The electrochemical behavior of Li–O2 batteries containing bis(trifluoromethane)sulfonimide lithium salt (LiTFSI)/tetraglyme electrolyte were investigated by galvanostatic cycling and electrochemical impedance spectroscopy measurements. Ex-situ X-ray diffraction and scanning electron microscopy were used to evaluate the formation/dissolution of Li2O2 particles at the cathode side during the operation of Li–O2 cells.
PMCID: PMC3817647  PMID: 24205461
aprotic electrolyte; impedance spectroscopy; Li–O2 batteries; scanning electron microscopy
15.  Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy 
We report here a way for improving the stability of ultramicroelectrodes (UME) based on hexacyanoferrate-modified metals for the detection of hydrogen peroxide. The most stable sensors were obtained by electrochemical deposition of six layers of hexacyanoferrates (HCF), more specifically, an alternating pattern of three layers of Prussian Blue and three layers of Ni–HCF. The microelectrodes modified with mixed layers were continuously monitored in 1 mM hydrogen peroxide and proved to be stable for more than 5 h under these conditions. The mixed layer microelectrodes exhibited a stability which is five times as high as the stability of conventional Prussian Blue-modified UMEs. The sensitivity of the mixed layer sensor was 0.32 A·M−1·cm−2, and the detection limit was 10 µM. The mixed layer-based UMEs were used as sensors in scanning electrochemical microscopy (SECM) experiments for imaging of hydrogen peroxide evolution.
PMCID: PMC3817653  PMID: 24205459
energy related; hydrogen peroxide; nanomaterials; nickel hexacyanoferrate; Prussian Blue; scanning electrochemical microscopy; ultramicroelectrodes
16.  Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport 
Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity.
PMCID: PMC3817934  PMID: 24205452
atomistic simulation; morphology; Nafion membrane; proton transport; quantum molecular dynamics
17.  Nanoglasses: a new kind of noncrystalline materials 
Nanoglasses are a new class of noncrystalline solids. They differ from today’s glasses due to their microstructure that resembles the microstructure of polycrystals. They consist of regions with a melt-quenched glassy structure connected by interfacial regions, the structure of which is characterized (in comparison to the corresponding melt-quenched glass) by (1) a reduced (up to about 10%) density, (2) a reduced (up to about 20%) number of nearest-neighbor atoms and (3) a different electronic structure. Due to their new kind of atomic and electronic structure, the properties of nanoglasses may be modified by (1) controlling the size of the glassy regions (i.e., the volume fraction of the interfacial regions) and/or (2) by varying their chemical composition. Nanoglasses exhibit new properties, e.g., a Fe90Sc10 nanoglass is (at 300 K) a strong ferromagnet whereas the corresponding melt-quenched glass is paramagnetic. Moreover, nanoglasses were noted to be more ductile, more biocompatible, and catalytically more active than the corresponding melt-quenched glasses. Hence, this new class of noncrystalline materials may open the way to technologies utilizing the new properties.
PMCID: PMC3778333  PMID: 24062978
amorphous materials; ferromagnetism; nanoglasses; nanostructured materials; noncrystalline materials
18.  A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source 
The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.
PMCID: PMC3778399  PMID: 24062975
cathodoluminescence; electron field emission; light source; nano-graphite; vacuum electronics
19.  Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications 
Novel composite membranes for high temperature polymer-electrolyte fuel cells (HT-PEFC) based on a poly[oxy-3,3-bis(4′-benzimidazol-2″-ylphenyl)phtalide-5″(6″)-diyl] (PBI-O-PhT) polymer with small amounts of added Zr were prepared. It was shown in a model reaction between zirconium acetylacetonate (Zr(acac)4) and benzimidazole (BI) that Zr-atoms are capable to form chemical bonds with BI. Thus, Zr may be used as a crosslinking agent for PBI membranes. The obtained Zr/PBI-O-PhT composite membranes were examined by means of SAXS, thermomechanical analysis (TMA), and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC) durability test. The modification of the PBI-O-PhT films with Zr facilitated an increase of the phosphoric acid (PA) uptake by the membranes, which resulted in an up to 2.5 times increased proton conductivity. The existence of an optimal amount of Zr content in the modified PBI-O-PhT film was shown. Larger amounts of Zr lead to a lower PA doping level and a reduced conductivity due to an excessively high degree of crosslinking.
PMCID: PMC3778389  PMID: 24062974
composite; high temperature polymer-electrolyte fuel cells (HT-PEFC); impedance spectroscopy; polybenzimidazole (PBI); zirconium
20.  The role of electron-stimulated desorption in focused electron beam induced deposition 
We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor it is observed that the growth rate is lower at higher substrate temperatures. From Arrhenius plots we calculated the activation energy for desorption, E des, of W(CO)6. We found an average value for E des of 20.3 kJ or 0.21 eV, which is 2.5–3.0 times lower than literature values. This difference between estimates for E des from FEBIP experiments compared to literature values is consistent with earlier findings by other authors. The discrepancy is attributed to electron-stimulated desorption, which is known to occur during electron irradiation. The data suggest that, of the W(CO)6 molecules that are affected by the electron irradiation, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for desorption.
PMCID: PMC3778412  PMID: 24062973
desorption energy; focused electron beam induced processing; scanning transmission electron microscopy; temperature dependence; tungsten hexacarbonyl
21.  Structural and thermoelectric properties of TMGa3 (TM = Fe, Co) thin films 
Based on chemically synthesized powders of FeGa3, CoGa3, as well as of a Fe0.75Co0.25Ga3 solid solution, thin films (typical thickness 40 nm) were fabricated by flash evaporation onto various substrates held at ambient temperature. In this way, the chemical composition of the powders could be transferred one-to-one to the films as demonstrated by Rutherford backscattering experiments. The relatively low deposition temperature necessary for conserving the composition leads, however, to ‘X-ray amorphous’ film structures with immediate consequences on their transport properties: A practically temperature-independent electrical resistivity of ρ = 200 μΩ·cm for CoGa3 and an electrical resistivity of about 600 μΩ·cm with a small negative temperature dependence for FeGa3. The observed values and temperature dependencies are typical of high-resistivity metallic glasses. This is especially surprising in the case of FeGa3, which as crystalline bulk material exhibits a semiconducting behavior, though with a small gap of 0.3 eV. Also the thermoelectric performance complies with that of metallic glasses: Small negative Seebeck coefficients of the order of −6 μV/K at 300 K with almost linear temperature dependence in the range 10 K ≤ T ≤ 300 K.
PMCID: PMC3740773  PMID: 23946915
amorphous metal films; energy related; intermetallic compounds; nanomaterials; Seebeck coefficient; thermoelectric properties; thin metal films
22.  Synthesis and thermoelectric properties of Re3As6.6In0.4 with Ir3Ge7 crystal structure 
The Re3As7− xInx solid solution was prepared for x ≤ 0.5 by heating the elements in stoichiometric ratios in evacuated silica tubes at 1073 K. It crystallizes with the Ir3Ge7 crystal structure, space group Im−3m, with a unit-cell parameter a ranging from 8.716 to 8.747 Å. The crystal structure and properties were investigated for a composition with x = 0.4. It is shown that indium substitutes arsenic exclusively at one crystallographic site, such that the As–As dumbbells with d As–As = 2.54 Å remain intact. Re3As6.6In0.4 behaves as a bad metal or heavily doped semiconductor, with electrons being the dominant charge carriers. It possesses high values of Seebeck coefficient and low thermal conductivity, but relatively low electrical conductivity, which leads to rather low values of the thermoelectric figure of merit.
PMCID: PMC3740774  PMID: 23946913
band-structure calculations; energy conversion; Ir3Ge7 type; solid solution; thermoelectric material
23.  Guided immobilisation of single gold nanoparticles by chemical electron beam lithography 
The fabrication of periodic arrays of single metal nanoparticles is of great current interest. In this paper we present a straight-forward three-step procedure based on chemical electron beam lithography, which is capable of producing such arrays with gold nanoparticles (AuNPs). Preformed 6 nm AuNPs are immobilised on thiol patterns with a pitch of 100 nm by guided self-assembly. Afterwards, these arrays are characterised by using atomic force microscopy.
PMCID: PMC3678398  PMID: 23766959
2D pattern; indium tin oxide (ITO); positioning; SAM; self-assembly
24.  Near-field effects and energy transfer in hybrid metal-oxide nanostructures 
One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu3+, since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are supported by simulations of the electromagnetic field enhancement in the vicinity of well-defined nanoantennas. The results show that the presence of the nanoparticle layer can modify the field enhancement significantly. In addition, we find that the fluorescent intensities observed in the experiments are affected by agglomeration of the nanoparticles. In order to further elucidate the possible influence of agglomeration and quenching effects in the vicinity of the nanoantennas, we have used a commercial organic pigment containing Eu, which exhibits an extremely narrow particle size distribution and no significant agglomeration. We demonstrate that quenching of the Eu fluorescence can be suppressed by covering the nanoantennas with a 10 nm thick SiOx layer.
PMCID: PMC3678447  PMID: 23766954
confocal microscopy; energy transfer; field enhancement; light harvesting; luminescence; nano-antennas; nanosphere lithography; nanostructures; plasmonics; simulation; TiO2 nanoparticles
25.  Functionalization of vertically aligned carbon nanotubes 
This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.
PMCID: PMC3596098  PMID: 23504581
aligned; carbon nanotubes; fluorination; functionalization; graphene; nitration; oxidation

Results 1-25 (70)