Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Models of the interaction of metal tips with insulating surfaces 
We present the results of atomistic simulations of metallic atomic-force-microscopy tips interacting with ionic substrates, with atomic resolution. Chromium and tungsten tips are used to image the NaCl(001) and MgO(001) surfaces. The interaction of the tips with the surface is simulated by using density-functional-theory calculations employing a mixed Gaussian and plane-wave basis and cluster-tip models. In each case, the apex of the metal cluster interacts more attractively with anions in the surfaces than with cations, over the range of typical imaging distances, which leads to these sites being imaged as raised features (bright) in constant-frequency-shift images. We compare the results of the interaction of a chromium tip with the NaCl surface, with calculations employing exclusively plane-wave basis sets and a fully periodic tip model, and demonstrate that the electronic structure of the tip model employed can have a significant quantitative effect on calculated forces when the tip and surface are clearly separated.
PMCID: PMC3343269  PMID: 22563530
atomic force microscopy; density functional theory; ionic surfaces; metallic asperities; surface interactions
2.  Hydride ions in oxide hosts hidden by hydroxide ions 
Nature Communications  2014;5:3515.
The true oxidation state of formally ‘H−’ ions incorporated in an oxide host is frequently discussed in connection with chemical shifts of 1H nuclear magnetic resonance spectroscopy, as they can exhibit values typically attributed to H+. Here we systematically investigate the link between geometrical structure and chemical shift of H− ions in an oxide host, mayenite, with a combination of experimental and ab initio approaches, in an attempt to resolve this issue. We demonstrate that the electron density near the hydrogen nucleus in an OH− ion (formally H+ state) exceeds that in an H− ion. This behaviour is the opposite to that expected from formal valences. We deduce a relationship between the chemical shift of H− and the distance from the H− ion to the coordinating electropositive cation. This relationship is pivotal for resolving H− species that are masked by various states of H+ ions.
The oxidation state of hydride ions in oxide hosts is a matter of debate. Here, the authors address this question with a range of techniques and suggest that the electron density near an incorporated hydride ion is less than that at the hydrogen in a hydroxide ion, contrary to formal valence arguments.
PMCID: PMC3973043  PMID: 24662678

Results 1-2 (2)