PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies 
Nature Communications  2015;6:8845.
Metal adhesion on metal oxides is strongly controlled by the oxide surface structure and composition, but lack of control over the surface conditions often limits the possibilities to exploit this in opto- and micro-electronics applications and heterogeneous catalysis where nanostructural control is of utmost importance. The Cu/ZnO system is among the most investigated of such systems in model studies, but the presence of subsurface ZnO defects and their important role for adhesion on ZnO have been unappreciated so far. Here we reveal that the surface-directed migration of subsurface defects affects the Cu adhesion on polar ZnO(0001) in the technologically interesting temperature range up to 550 K. This leads to enhanced adhesion and ultimately complete wetting of ZnO(0001) by a Cu overlayer. On the basis of our experimental and computational results we demonstrate a mechanism which implies that defect concentrations in the bulk are an important, and possibly controllable, parameter for the metal-on-oxide growth.
Comprehensive elucidation of metal-support interactions is important for controlling and improving their performances in a range of pertinent technologies. Here, the authors reveal how subsurface defects influence the adhesion and wetting of a metal on the surface of a metal oxide.
doi:10.1038/ncomms9845
PMCID: PMC4660204  PMID: 26567989
2.  Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface 
Summary
Based on high-resolution noncontact atomic force microscopy (NC-AFM) experiments we reveal a detailed structural model of the polar (111) surface of the insulating ternary metal oxide, MgAl2O4 (spinel). NC-AFM images reveal a 6√3×6√3R30° superstructure on the surface consisting of patches with the original oxygen-terminated MgAl2O4(111) surface interrupted by oxygen-deficient areas. These observations are in accordance with previous theoretical studies, which predict that the polarity of the surface can be compensated by removal of a certain fraction of oxygen atoms. However, instead of isolated O vacancies, it is observed that O is removed in a distinct pattern of line vacancies reflected by the underlying lattice structure. Consequently, by the creation of triangular patches in a 6√3×6√3R30° superstructure, the polar-stabilization requirements are met.
doi:10.3762/bjnano.3.21
PMCID: PMC3323907  PMID: 22496991
aluminium oxide; metal oxide surfaces; noncontact atomic force microscopy (NC-AFM); polar surfaces; reconstructions; spinel

Results 1-2 (2)