PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Urinary stone differentiation in patients with large body size using dual-energy dual-source computed tomography 
European radiology  2012;23(5):1408-1414.
Objective
To evaluate the ability of 100/Sn140 kV (Sn, tin filter) dual-energy CT to differentiate urinary stone types in a patient cohort with a wide range of body sizes.
Methods
80 human urinary stones were categorised into four groups (uric acid; cystine; struvite, oxalate and brushite together; and apatite) and imaged in 30–50-cm wide water tanks using clinical 100/Sn140 kV protocols. The CT number ratio (CTR) between the low- and high-energy images was calculated. Thresholds for differentiating between stone groups were determined using ROC analysis. Additionally, 86 stones from 66 patients were characterised using the size-adaptive CTR thresholds determined in the phantom study.
Results
In phantoms, the area under the ROC curve for differentiating between stone groups ranged from 0.71 to 1.00, depending on phantom size. In patients, body width ranged from 28.5 to 50.0 cm, and 79.1% of stones were correctly characterised. Sensitivity and specificity for correctly identifying the stone category were 100% and 100% (group 1), 100% and 95.3% (group 2), 85.7% and 60.9% (group 3), and 52.6% and 92.5% (group 4).
Conclusion
Dual-energy CT can provide in vivo urinary stone characterisation for patients over a wide range of body sizes.
doi:10.1007/s00330-012-2727-4
PMCID: PMC3780962  PMID: 23263603
Dual-energy CT; dual-source CT; CT number ratio; urinary stones; body size
2.  3-D volumetric computed tomographic scoring as an objective outcome measure for chronic rhinosinusitis: Clinical correlations and comparison to Lund-Mackay scoring 
Background
We aimed to test the hypothesis that 3-D volume-based scoring of computed tomographic (CT) images of the paranasal sinuses was superior to Lund-Mackay CT scoring of disease severity in chronic rhinosinusitis (CRS). We determined correlation between changes in CT scores (using each scoring system) with changes in other measures of disease severity (symptoms, endoscopic scoring, and quality of life) in patients with CRS treated with triamcinolone.
Methods
The study group comprised 48 adult subjects with CRS. Baseline symptoms and quality of life were assessed. Endoscopy and CT scans were performed. Patients received a single systemic dose of intramuscular triamcinolone and were reevaluated 1 month later. Strengths of the correlations between changes in CT scores and changes in CRS signs and symptoms and quality of life were determined.
Results
We observed some variability in degree of improvement for the different symptom, endoscopic, and quality-of-life parameters after treatment. Improvement of parameters was significantly correlated with improvement in CT disease score using both CT scoring methods. However, volumetric CT scoring had greater correlation with these parameters than Lund-Mackay scoring.
Conclusion
Volumetric scoring exhibited higher degree of correlation than Lund-Mackay scoring when comparing improvement in CT score with improvement in score for symptoms, endoscopic exam, and quality of life in this group of patients who received beneficial medical treatment for CRS.
doi:10.1002/alr.21219
PMCID: PMC3971423  PMID: 24106202
computed tomography; computer-assisted image analysis; endoscopy; quality of life; Lund-Mackay
3.  Characterisation of urinary stones in the presence of iodinated contrast medium using dual-energy CT: a phantom study 
European radiology  2012;22(12):2589-2596.
Objective
To develop a dual-energy CT (DECT) method for differentiating uric acid (UA) from non-UA stones in the presence of iodinated contrast medium.
Methods
Thirty UA and 45 non-UA stones were selected after infra-red spectroscopic analysis and independently placed in a 1.5-ml vial, which was filled first with saline and then with increasing concentrations of iodine. For each condition, tubes were put in a 35-cm water phantom and examined using a dual-source CT system at 100 and 140 kV. Virtual unenhanced images created from CT data sets of the stones in iodine-containing solutions provided position and volume information. This map was used to calculate a CT number ratio to differentiate stone type. A region-growing method was developed to improve the ability to differentiate between UA and non-UA stones with iodinated contrast medium.
Results
The sensitivity for detecting UA stones was 100 % for unenhanced images but fell to 18 % with 20 mgI/ml iodine solution and 0 % for higher concentrations. With region growing, the sensitivity for detecting UA stones was increased to 100 %, 82 %, 57 %, 50 % and 21 % for iodine solutions of 20, 40, 60, 80 and 100 mgI/ml.
Conclusion
The region-growing method improves differentiation of UA from non-UA stones on contrast-enhanced DECT urograms.
doi:10.1007/s00330-012-2532-0
PMCID: PMC3970240  PMID: 22865225
CT Urogram; Dual-energy CT; Urinary stone compositions; Virtual unenhanced CT; Region growing method
4.  Detectability of Urinary Stones on Virtual Nonenhanced Images Generated at Pyelographic-Phase Dual-Energy CT 
Radiology  2010;256(1):184-190.
Purpose
To evaluate the detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy computed tomography (CT).
Materials and Methods
This retrospective HIPAA-compliant study was institutional review board approved. All included patients had previously consented to the use of their medical records for research. Sixty-two patients (38 men, 24 women; age range, 35–91 years) had undergone CT urography, which consisted of nonenhanced and pyelographic-phase dual-energy CT performed by using a dual-source scanner. Commercial software was used to create virtual non-enhanced images by suppressing the iodine signal from the pyelographic-phase dual-energy CT scans. Two radiologists, in consensus, evaluated the virtual nonenhanced images for the presence of stones. Sensitivity for detecting stones was calculated on a per-stone basis. Sensitivity, specificity, and accuracy were also calculated on a per–renal unit (defined as the intrarenal collecting system and ureter of one kidney) basis. The true nonenhanced scan was considered the reference standard. A jackknife method was used because any patient may have multiple stones.
Results
Of 62 patients with 122 renal units, 21 patients with 25 renal units had a total of 43 stones (maximal transverse diameter range, 1–24 mm; median, 3 mm). The overall sensitivity for detecting stones was 63% (27 of 43 stones) per stone. Sensitivities were 29% (four of 14 stones) for 1–2-mm stones, 64% (nine of 14 stones) for 3–4-mm stones, 83% (five of six stones) for 5–6-mm stones, and 100% (nine of nine stones) for 7-mm or larger (7, 7, 7, 8, 8, 9, 11, 15, and 24 mm) stones. All three ureteral stones (3, 4, and 8 mm) were correctly identified. The sensitivity, specificity, and accuracy for detecting stones on a per–renal unit basis were 65% (17 of 26 renal units), 92% (88 of 96 renal units), and 86% (105 of 122 renal units), respectively.
Conclusion
Virtual nonenhanced images generated at pyelographic-phase dual-energy CT enabled the detection of urinary stones with moderate accuracy. The detection of small (1–2-mm) stones was limited.
doi:10.1148/radiol.10091411
PMCID: PMC3968072  PMID: 20574095
5.  Metal Artifact Reduction From Reformatted Projections for Hip Prostheses in Multislice Helical Computed Tomography 
Investigative radiology  2009;44(11):691-696.
Purpose
Hip prosthesis is one of the most common types of metal implants and can cause significant artifacts in computed tomography (CT) examinations. The purpose of this work was to develop a projection-based method for reducing metal artifacts caused by hip prostheses in multislice helical CT.
Method and Materials
The proposed method is based on a novel concept, reformatted projection, which is formed by combining the projection data at the same view angle over the full longitudinal scan range. Detection and segmentation of the metal were performed on each reformatted projection image. Two dimensional interpolation based on Delaunay triangulation was used to fill voids left after removal of the metal in the reformatted projection. The corrected data were then reconstructed using a commercially available algorithm. The main advantage of this method is that both the detection of the metal objects and the interpolations are performed on complete reformatted projections with the entire metal region present, which is particularly useful for long hip prostheses. Twenty clinical abdominal/pelvis exams with hip prostheses were corrected and clinically evaluated.
Results
The overall image quality and the conspicuity in some critical organs were significantly improved compared with the uncorrected images: overall quality (P = 0.0024); bladder base (P = 0.0027), and rectum (P = 0.0078). The average noise level in the bladder base was reduced from 86.7 HU to 36.2 HU. In 17 of 20 cases, the radiologists preferred either coronal (13) or axial (4) views of the corrected images.
Conclusions
A novel method for reducing metal artifact in multislice helical CT was developed. Initial clinical results showed that the proposed method can effectively reduce the artifacts caused by metal implants for the cases of unilateral and bilateral hip prothesis.
doi:10.1097/RLI.0b013e3181b0a2f9
PMCID: PMC3966535  PMID: 19809345
computed tomography (CT); multi-slice helical CT; metal artifact reduction
6.  Imaging Evaluation and Treatment of Nephrolithiasis 
Minnesota medicine  2010;93(8):48-51.
Advances in radiology have led to improvements in care for patients with urinary tract stones. One of the most promising imaging techniques is dual-energy CT, which enables more accurate characterization of stone disease than other imaging techniques and helps direct therapy at the time of the initial imaging evaluation. Improvements in percutaneous therapy have led to less-invasive and less-costly treatments for nephrolithiasis. This article describes some of these new approaches to diagnosing and caring for patients with renal stone disease.
PMCID: PMC3927414  PMID: 20862880
7.  Peak Skin and Eye Lens Radiation Dose From Brain Perfusion CT Based on Monte Carlo Simulation 
OBJECTIVE.
The purpose of our study was to accurately estimate the radiation dose to skin and the eye lens from clinical CT brain perfusion studies, investigate how well scanner output (expressed as volume CT dose index [CTDIvol]) matches these estimated doses, and investigate the efficacy of eye lens dose reduction techniques.
MATERIALS AND METHODS.
Peak skin dose and eye lens dose were estimated using Monte Carlo simulation methods on a voxelized patient model and 64-MDCT scanners from four major manufacturers. A range of clinical protocols was evaluated. CTDIvol for each scanner was obtained from the scanner console. Dose reduction to the eye lens was evaluated for various gantry tilt angles as well as scan locations.
RESULTS.
Peak skin dose and eye lens dose ranged from 81 mGy to 348 mGy, depending on the scanner and protocol used. Peak skin dose and eye lens dose were observed to be 66–79% and 59–63%, respectively, of the CTDIvol values reported by the scanners. The eye lens dose was significantly reduced when the eye lenses were not directly irradiated.
CONCLUSION.
CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the skin or eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy.
doi:10.2214/AJR.11.7230
PMCID: PMC3918416  PMID: 22268186
CT perfusion; eye lens dose; Monte Carlo simulation; radiation dose; skin dose
8.  Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: An ex vivo phantom study 
AJR. American journal of roentgenology  2011;196(6):1279-1287.
Purpose
To determine the ex vivo ability of dual-energy, dual-source computed tomography (DE-DSCT) with additional tin filtration to differentiate between five groups of human renal stone types.
Methods
Forty-three renal stones of ten types were categorized into five primary groups based on effective atomic numbers, which were calculated as the weighted average of the atomic numbers of constituent atoms. Stones were embedded in porcine kidneys and placed in a 35cm water phantom. DE-DSCT scans were performed with and without tin filtration at 80/140kV. The CT number ratio [CTR=CT(low)/CT(high)] was calculated on a volumetric voxel-by-voxel basis for each stone. Statistical analysis was performed and receiver operating characteristic (ROC) curves were plotted to compare the difference in CTR with and without tin filtration, and to measure the discrimination between stone groups.
Results
CTR of non-uric acid stones increased on average by 0.17 (range 0.03–0.36) with tin filtration. The CTR values for non-uric acid stone groups were not significantly different (p>0.05) between any of the two adjacent groups without tin filtration. Use of the additional tin filtration on the high-energy x-ray tube significantly improved the separation of non-uric acid stone types by CTR (p<0.05). The area under the ROC curve increased from 0.78–0.84 without fin filtration to 0.89–0.95 with tin filtration.
Conclusion
Our results demonstrated better separation between different stone types when additional tin filtration was used on DE-DSCT. The increased spectral separation allowed a 5-group stone classification scheme. Some overlapping between particular stone types still exists, including brushite and calcium oxalate.
doi:10.2214/AJR.10.5041
PMCID: PMC3901037  PMID: 21606290
9.  Understanding the Relationship Between Image Quality and Motion Velocity in Gated Computed Tomography:Preliminary Work for 4-Dimensional Musculoskeletal Imaging 
Objectives
To study the effect of motion velocity on image quality to determine the requirements for 4-dimensional (4D; ie, 3D + time) musculoskeletal computed tomographic (CT) imaging.
Materials and Methods
A phantom with resolution targets in both axial (x-y) and coronal (x-z) planes was attached to a motion device and scanned with 64-slice CT using a retrospectively gated CT protocol with pitch values of 0.1 and 0.2. Data were acquired with the phantom at rest and while moving periodically along the x axis at several velocities. Spatial resolution and motion artifacts were assessed both for the axial and coronal targets.
Results
A linear relationship was found between motion artifact severity and phantom velocity. Spatial resolution was better preserved in the coronal target. However, coronal images displayed banding artifacts, with band displacements being linearly related to motion velocity.
Conclusions
The 4D CT imaging of periodically moving objects with velocities up to 20 mm/s is feasible using a pitch value of 0.1 and a motion frequency of 30 cycles per minute.
doi:10.1097/RCT.0b013e31815c5abc
PMCID: PMC2744860  PMID: 18664854
64-slice computed tomography; 4D imaging, motion artifacts; ECG gating
10.  Strategies for Reducing Radiation Dose in CT 
doi:10.1016/j.rcl.2008.10.006
PMCID: PMC2743386  PMID: 19195532
CT; Radiation Dose; Cardiac CT; Dose Reduction; Automatic Exposure Control; Effective Dose
11.  Porcine Ex Vivo Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: Development and Initial Results 
Investigative radiology  2011;46(9):586-593.
Objectives
To demonstrate the feasibility of developing a fixed, dual-input, biological liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging.
Materials and Methods
Porcine livers were obtained from completed surgical studies and perfused with saline and fixative. The phantom was placed in a body-shaped, CT-compatible acrylic container and connected to a perfusion circuit fitted with a contrast injection port. Flow-controlled contrast-enhanced imaging experiments were performed using a 128-slice and 64 slice, dual-source multidetector CT scanners. CT angiography protocols were employed to obtain portal venous and hepatic arterial vascular enhancement, reproduced over a period of four to six months. CT perfusion protocols were employed at different input flow rates to correlate input flow with calculated tissue perfusion, to test reproducibility and demonstrate the feasibility of simultaneous dual input liver perfusion. Histologic analysis of the liver phantom was also performed.
Results
CT angiogram 3D reconstructions demonstrated homogenous tertiary and quaternary branching of the portal venous system out to the periphery of all lobes of the liver as well as enhancement of the hepatic arterial system to all lobes of the liver and gallbladder throughout the study period. For perfusion CT, the correlation between the calculated mean tissue perfusion in a volume of interest and input pump flow rate was excellent (R2 = 0.996) and color blood flow maps demonstrated variations in regional perfusion in a narrow range. Repeat perfusion CT experiments demonstrated reproducible time-attenuation curves and dual-input perfusion CT experiments demonstrated that simultaneous dual input liver perfusion is feasible. Histologic analysis demonstrated that the hepatic microvasculature and architecture appeared intact and well preserved at the completion of four to six months of laboratory experiments and contrast enhanced imaging.
Conclusions
We have demonstrated successful development of a porcine liver phantom using a flow-controlled extracorporeal perfusion circuit. This phantom exhibited reproducible dynamic contrast-enhanced CT of the hepatic arterial and portal venous system over a four to six month period.
doi:10.1097/RLI.0b013e31821c0e84
PMCID: PMC3164269  PMID: 21610506
Perfusion Imaging; Computed Tomography; Biological Phantom; Porcine
12.  Correlation of histological findings from a large ciliochoroidal melanoma with CT perfusion and 3T MRI dynamic enhancement studies 
Background
The initial use of a 64-slice computed tomography (CT) scanner for obtaining quantitative perfusion data from a large ciliochoroidal melanoma, and correlation with 3T magnetic resonance imaging (MRI) dynamic enhancement and tumor histology.
Methods
The CT perfusion scan was performed using 80 kVp, 250 mA and 1-sec rotation time for 40 sec. The analysis was performed using commercial perfusion analysis software with a prototype 3-dimensional motion correction tool. Dynamic contrast-enhanced 3-Tesla MRI measured the kinetics of enhancement to estimate the vascular permeability. The time-dependent enhancement patterns were obtained using the average signal intensity using Functool analysis software. The involved globe was enucleated and microscopic evaluation of the tumor was performed.
Results
The perfusion parameters blood flow, blood volume and permeability surface area product in the affected eye determined by CT perfusion analysis were 118 ml/100 ml/min, 11.3 ml/100 ml and 48 ml/100 ml/min. Dynamic MRI enhancement showed maximal intensity increase of 111%. The neoplasm was a ciliochoroidal spindle cell melanoma which was mitotically active (13 mitoses/40 hpf). Vascular loops and arcades were present throughout the tumor. The patient developed metastases within 9 months of presentation.
Conclusion
Quantitative CT perfusion analysis of ocular tumors is feasible with motion correction software.
PMCID: PMC2693997  PMID: 19668716
ciliochoroidal melanoma; CT perfusion imaging; MR enhancement imaging; tumor blood volume; tumor blood flow; tumor permeability
13.  Radiation dose reduction in computed tomography: techniques and future perspective 
Imaging in medicine  2009;1(1):65-84.
Despite universal consensus that computed tomography (CT) overwhelmingly benefits patients when used for appropriate indications, concerns have been raised regarding the potential risk of cancer induction from CT due to the exponentially increased use of CT in medicine. Keeping radiation dose as low as reasonably achievable, consistent with the diagnostic task, remains the most important strategy for decreasing this potential risk. This article summarizes the general technical strategies that are commonly used for radiation dose management in CT. Dose-management strategies for pediatric CT, cardiac CT, dual-energy CT, CT perfusion and interventional CT are specifically discussed, and future perspectives on CT dose reduction are presented.
doi:10.2217/iim.09.5
PMCID: PMC3271708  PMID: 22308169
computed tomography; CT; CT technology; radiation dose reduction; radiation risk
14.  Radiation Dose and Safety in Cardiac Computed Tomography 
Cardiology clinics  2009;27(4):665-677.
Synopsis
As a result of the changes in utilization of imaging procedures that rely on ionizing radiation, the collective dose has increased by over 700% and the annual per-capita dose, by almost 600% over recent years. It is certainly possible that this growing use may have significant effects on public health. Although there are uncertainties related to the accuracy of calculated radiation exposure and the estimated biologic risk, there are measures that can be taken to reduce any potential risks while maintaining diagnostic accuracy. This article will review the existing data regarding biological hazards of radiation exposure associated to medical diagnostic testing, the methodology used to estimate radiation exposure and the measures that can be taken to effectively reduce it.
doi:10.1016/j.ccl.2009.06.006
PMCID: PMC2749002  PMID: 19766923
15.  Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in-vivo 
AJR. American journal of roentgenology  2010;195(5):1164-1174.
Purpose
To investigate the effect on radiation dose and image quality of the use of additional spectral filtration for dual-energy CT (DECT) imaging using dual-source CT (DSCT).
Materials and Methods
A commercial DSCT scanner was modified by adding tin filtration to the high-kV tube, and radiation output and noise measured in water phantoms. Dose values for equivalent image noise were compared among DE-modes with and without tin filtration and single-energy (SE) mode. To evaluate DECT material discrimination, the material-specific DEratio for calcium and iodine were determined using images of anthropomorphic phantoms. Data were additionally acquired in 38 and 87 kg pigs, and noise for the linearly mixed and virtual non-contrast (VNC) images compared between DE-modes. Finally, abdominal DECT images from two patients of similar sizes undergoing clinically-indicated CT were compared.
Results
Adding tin filtration to the high-kV tube improved the DE contrast between iodine and calcium as much as 290%. Pig data showed that the tin filtration had no effect on noise in the DECT mixed images, but decreased noise by as much as 30% in the VNC images. Patient VNC-images acquired using 100/140 kV with added tin filtration had improved image quality compared to those generated with 80/140 kV without tin filtration.
Conclusion
Tin filtration of the high-kV tube of a DSCT scanner increases the ability of DECT to discriminate between calcium and iodine, without increasing dose relative to SECT. Furthermore, use of 100/140 kV tube potentials allows improved DECT imaging of large patients.
doi:10.2214/AJR.09.3956
PMCID: PMC2963033  PMID: 20966323
Dual-energy CT; dual-source CT; material differentiation; beam filtration; CT image quality; CT radiation dose
16.  Dose to Radiosensitive Organs During Routine Chest CT: Effects of Tube Current Modulation 
AJR. American journal of roentgenology  2009;193(5):1340-1345.
Objective
The aims of this study were to estimate the dose to radiosensitive organs (glandular breast and lung) in patients of various sizes undergoing routine chest CT examinations with and without tube current modulation; to quantify the effect of tube current modulation on organ dose; and to investigate the relation between patient size and organ dose to breast and lung resulting from chest CT examinations.
Materials and Methods
Thirty voxelized models generated from images of patients were extended to include lung contours and were used to represent a cohort of women of various sizes. Monte Carlo simulation–based virtual MDCT scanners had been used in a previous study to estimate breast dose from simulations of a fixed-tube-current and a tube current–modulated chest CT examinations of each patient model. In this study, lung doses were estimated for each simulated examination, and the percentage organ dose reduction attributed to tube current modulation was correlated with patient size for both glandular breast and lung tissues.
Results
The average radiation dose to lung tissue from a chest CT scan obtained with fixed tube current was 23 mGy. The use of tube current modulation reduced the lung dose an average of 16%. Reductions in organ dose (up to 56% for lung) due to tube current modulation were more substantial among smaller patients than larger. For some larger patients, use of tube current modulation for chest CT resulted in an increase in organ dose to the lung as high as 33%. For chest CT, lung dose and breast dose estimates had similar correlations with patient size. On average the two organs receive approximately the same dose effects from tube current modulation.
Conclusion
The dose to radiosensitive organs during fixed-tube-current and tube current–modulated chest CT can be estimated on the basis of patient size. Organ dose generally decreases with the use of tube current–modulated acquisition, but patient size can directly affect the dose reduction achieved.
doi:10.2214/AJR.09.2886
PMCID: PMC2954276  PMID: 19843751
CT; Monte Carlo simulation; radiation dose; tube current modulation; voxelized patient model
17.  Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT 
Physics in medicine and biology  2009;54(3):497-512.
Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient’s glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient’s clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.
doi:10.1088/0031-9155/54/3/003
PMCID: PMC2948848  PMID: 19124953
18.  Dual-Source Computed Tomographic Temporal Resolution Provides Higher Image Quality Than 64-Detector Temporal Resolution at Low Heart Rates 
Objective
To compare coronary image quality at temporal resolutions associated with dual-source computed tomography (DSCT; 83 milliseconds) and 64–detector row scanning (165 milliseconds).
Methods
In 30 patients with a heart rate of less than 70 beats per minute, DSCT coronary angiograms were reconstructed at 83- and 165-millisecond temporal resolutions over different cardiac phases. A blinded observer graded coronary quality.
Results
The typical DSCT temporal resolution (83 milliseconds) showed a significantly greater quality at end-systole for all coronary vessels and at end-diastole for the right coronary and left anterior descending coronary arteries. For all vessels, the end-diastole produced the highest quality for both temporal resolutions.
Conclusions
Imaging at 83 milliseconds creates superior quality at end-systole for all coronary vessels and at end-diastole for the right coronary and left anterior descending coronary arteries. At low heart rates, end-diastole produces the highest quality at both temporal resolutions.
doi:10.1097/RCT.0b013e3181b67163
PMCID: PMC2923656  PMID: 20118724
CT; DSCT; coronary; temporal resolution; quality
19.  In Defense of Body CT 
Rapid technical developments, and an expanding list of applications that have supplanted less accurate or more invasive diagnostic tests, have led to a dramatic increase in the use of body CT imaging in medical practice since its introduction in 1975. Our purpose here is to discuss medical justification of the small risk associated with the ionizing radiation used in CT and to provide perspectives on practice-specific decisions that can maximize overall patient benefit. In addition, we review available dose management and optimization technique.
doi:10.2214/AJR.09.2754
PMCID: PMC2703011  PMID: 19542392
20.  Diagnostic Ionizing Radiation Exposure in a Population-Based Cohort of Patients with Inflammatory Bowel Disease 
Objective
For diagnosis, assessing disease activity, complications and extraintestinal manifestations, and monitoring response to therapy, patients with inflammatory bowel disease undergo many radiological studies employing ionizing radiation. However, the extent of radiation exposure in these patients is unknown.
Methods
A population-based inception cohort of 215 patients with inflammatory bowel disease from Olmsted County, Minnesota, diagnosed between 1990 and 2001, was identified. The total effective dose of diagnostic ionizing radiation was estimated for each patient. Linear regression was used to assess the median total effective dose since symptom onset.
Results
The number of patients with Crohn's disease and ulcerative colitis was 103 and 112, with a mean age at diagnosis of 38.6 and 39.4 yr, respectively. Mean follow-up was 8.9 yr for Crohn's disease and 9.0 yr for ulcerative colitis. Median total effective dose for Crohn's disease was 26.6 millisieverts (mSv) (range, 0–279) versus 10.5 mSv (range, 0–251) for ulcerative colitis (P < 0.001). Computed tomography accounted for 51% and 40% of total effective dose, respectively. Patients with Crohn's disease had 2.46 times higher total effective dose than ulcerative colitis patients (P = 0.001), adjusting for duration of disease.
Conclusions
Annualizing our data, the radiation exposure in the inflammatory bowel disease population was equivalent to the average annual background radiation dose from naturally occurring sources in the U.S. (3.0 mSv). However, a subset of patients had substantially higher doses. The development of imaging management guidelines to minimize radiation dose, dose-reduction techniques in computed tomography, and faster, more robust magnetic resonance techniques are warranted.
doi:10.1111/j.1572-0241.2008.01920.x
PMCID: PMC2831296  PMID: 18564113
21.  Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography 
The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (≤ 70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates.
doi:10.1007/s10554-009-9489-3
PMCID: PMC2788116  PMID: 19669664
Tomography; X-ray computed; Reproducibility of results; Radiographic image enhancement; Dual-source CT; CT coronary angiography; artifact; Motion artifact; Image quality; ECG gating
22.  Analysis of Heart Rate and Heart Rate Variation During Cardiac CT Examinations 
Academic radiology  2008;15(1):40-48.
Rationale and Objectives
We sought to examine heart rate and heart rate variability during cardiac computed tomography (CT).
Materials and Methods
Ninety patients (59.0 ± 13.5 years) underwent coronary CT angiography (CTA), with 52 patients also undergoing coronary artery calcium scanning (CAC). Forty-two patients with heart rate greater than 70 bpm were pretreated with oral β-blockers (in five patients, use of β-blocker was not known). Sixty-four patients were given sublingual nitroglycerin. Mean heart rate and percentage of beats outside a ±5 bpm region about the mean were compared between baseline (free breathing), prescan hyperventilation, and scan acquisition (breath-hold).
Results
Mean scan acquisition time was 13.1 ± 1.5 seconds for CAC scanning and 14.2 ± 2.9 seconds for coronary CTA. Mean heart rate during scan acquisition was significantly lower than at baseline (CAC 58.2 ± 8.5 bpm; CTA 59.2 ± 8.8 bpm; baseline 62.8 ± 8.9 bpm; P < .001). The percentage of beats outside a ±5 bpm about the mean were not different between baseline and CTA scanning (3.5% versus 3.3%, P = .87). The injection of contrast had no significant effect on heart rate (58.2 bpm versus 59.2 bpm, P = .24) or percentage of beats outside a ±5 bpm about the mean (3.0% versus 3.3%, P = .64). No significant difference was found between gender and age groups (P > .05).
Conclusions
Breath-holding during cardiac CT scan acquisition significantly lowers the mean heart rate by approximately 4 bpm, but heart rate variability is the same or less compared with normal breathing.
doi:10.1016/j.acra.2007.07.023
PMCID: PMC2744859  PMID: 18078905
Heart rate; computed tomography; coronary angiography
23.  Noninvasive Differentiation of Uric Acid versus Non-Uric Acid Kidney Stones Using Dual-Energy CT 
Academic radiology  2007;14(12):1441-1447.
Rationale and Objectives
To determine the accuracy and sensitivity for dual-energy computed tomography (DECT) discrimination of uric acid (UA) stones from other (non-UA) renal stones in a commercially implemented product.
Materials and Methods
Forty human renal stones comprising uric acid (n = 16), hydroxyapatite (n = 8), calcium ox-alate (n = 8), and cystine (n = 8) were inserted in four porcine kidneys (10 each) and placed inside a 32-cm water tank anterior to a cadaver spine. Spiral dual-energy scans were obtained on a dual-source, 64-slice computed tomography (CT) system using a clinical protocol and automatic exposure control. Scanning was performed at two different collimations (0.6 mm and 1.2 mm) and within three phantom sizes (medium, large, and extra large) resulting in a total of six image datasets. These datasets were analyzed using the dual-energy software tool available on the CT system for both accuracy (number of stones correctly classified as either UA or non-UA) and sensitivity (for UA stones). Stone characterization was correlated with micro-CT.
Results
For the medium and large phantom sizes, the DECT technique demonstrated 100% accuracy (40/40), regardless of collimation. For the extra large phantom size and the 0.6-mm collimation (resulting in the noisiest dataset), three (two cystine and one small UA) stones could not be classified (93% accuracy and 94% sensitivity). For the extra large phantom size and the 1.2-mm collimation, the dual-energy tool failed to identify two small UA stones (95% accuracy and 88% sensitivity).
Conclusions
In an anthropomorphic phantom model, dual-energy CT can accurately discriminate uric acid stones from other stone types.
doi:10.1016/j.acra.2007.09.016
PMCID: PMC2743375  PMID: 18035274
Kidney stones; renal calculi; dual-energy computed tomography; uric acid; urolithiasis
24.  Dual-Energy CT Iodine-Subtraction Virtual Unenhanced Technique to Detect Urinary Stones in an Iodine-Filled Collecting System: A Phantom Study 
AJR. American journal of roentgenology  2008;190(5):1169-1173.
OBJECTIVE
The objective of our study was to evaluate the feasibility of virtual unenhanced images reconstructed from a dual-energy CT scan to depict urinary stones in an iodine solution in a phantom study.
MATERIALS AND METHODS
Twenty urinary stones of different sizes (1.4-4.2 mm in short-axis diameter) were placed in plastic containers. The containers were consecutively filled with different concentrations of iodine solution (21, 43, 64, 85, and 107 mg/dL; CT attenuation value range, 510-2,310 H at 120 kVp). Dual-energy CT was repeated with 80-140 and 100-140 kVp pairs, two collimation-slice thickness combinations, and the presence or absence of a 4-cm-thick oil gel around the phantom. The iodine-subtraction virtual unenhanced images were reconstructed using commercial software. The images were evaluated by three radiologists in consensus for the visibility of the stones and the presence of residual nonsubtracted iodine. Stone visibility rates were compared between the 80-140 and 100-140 kVp pairs and the five different iodine concentrations.
RESULTS
Stone visibility rates with the 80-140 kVp pair were 99%, 93%, 96%, 94%, and 3% and those with the 100-140 kVp pair were 98%, 95%, 99%, 94%, and 99% for an iodine concentration of 21, 43, 64, 85, and 107 mg/dL, respectively. The poor visibility rate with 80-140 kVp and 107 mg/dL iodine concentration was due to the failure of iodine subtraction.
CONCLUSION
Dual-energy CT iodine-subtraction virtual unenhanced technique is capable of depicting urinary stones in iodine solutions of a diverse range of concentrations in a phantom study.
doi:10.2214/AJR.07.3154
PMCID: PMC2705667  PMID: 18430827
dual-energy CT; genitourinary imaging; iodine-subtraction imaging technique; reconstructed images; urinary stones
25.  Image Quality Optimization and Evaluation of Linearly-Mixed Images in Dual-Source, Dual-Energy CT 
Medical physics  2009;36(3):1019-1024.
In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 kV and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing to the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, we used a phantom study to evaluate the image quality of linearly-mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low- and high-energy scans. We first developed a method to optimize the quality of the linearly-mixed images such that the single-energy image quality was compared to the best-case image quality of the dual energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.
PMCID: PMC2672422  PMID: 19378762
computed tomography (CT); dual-energy CT; image quality

Results 1-25 (26)