PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("tzipori, Dov")
1.  The Origin of Human Mesenchymal Stromal Cells Dictates Their Reparative Properties 
Background
Human mesenchymal stromal cells (hMSCs) from adipose cardiac tissue have attracted considerable interest in regard to cell‐based therapies. We aimed to test the hypothesis that hMSCs from the heart and epicardial fat would be better cells for infarct repair.
Methods and Results
We isolated and grew hMSCs from patients with ischemic heart disease from 4 locations: epicardial fat, pericardial fat, subcutaneous fat, and the right atrium. Significantly, hMSCs from the right atrium and epicardial fat secreted the highest amounts of trophic and inflammatory cytokines, while hMSCs from pericardial and subcutaneous fat secreted the lowest. Relative expression of inflammation‐ and fibrosis‐related genes was considerably higher in hMSCs from the right atrium and epicardial fat than in subcutaneous fat hMSCs. To determine the functional effects of hMSCs, we allocated rats to hMSC transplantation 7 days after myocardial infarction. Atrial hMSCs induced greatest infarct vascularization as well as highest inflammation score 27 days after transplantation. Surprisingly, cardiac dysfunction was worst after transplantation of hMSCs from atrium and epicardial fat and minimal after transplantation of hMSCs from subcutaneous fat. These findings were confirmed by using hMSC transplantation in immunocompromised mice after myocardial infarction. Notably, there was a correlation between tumor necrosis factor‐α secretion from hMSCs and posttransplantation left ventricular remodeling and dysfunction.
Conclusions
Because of their proinflammatory properties, hMSCs from the right atrium and epicardial fat of cardiac patients could impair heart function after myocardial infarction. Our findings might be relevant to autologous mesenchymal stromal cell therapy and development and progression of ischemic heart disease.
doi:10.1161/JAHA.113.000253
PMCID: PMC3835227  PMID: 24080908
adipose tissue; epicardial fat; heart regeneration; inflammation; macrophages; mesenchymal stromal/stem cells; myocardial infarction
2.  The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell 
Cancer Microenvironment  2010;3(1):15-28.
Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche.
doi:10.1007/s12307-009-0034-7
PMCID: PMC2970809  PMID: 21209772
Multiple myeloma; Tumor-initiating cells; Hemopoietic stem cells; Stem cell niches; Bone marrow microenvironment
3.  The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell 
Cancer Microenvironment  2010;3(1):15-28.
Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche.
doi:10.1007/s12307-009-0034-7
PMCID: PMC2970809  PMID: 21209772
Multiple myeloma; Tumor-initiating cells; Hemopoietic stem cells; Stem cell niches; Bone marrow microenvironment
4.  p53 Plays a Role in Mesenchymal Differentiation Programs, in a Cell Fate Dependent Manner 
PLoS ONE  2008;3(11):e3707.
Background
The tumor suppressor p53 is an important regulator that controls various cellular networks, including cell differentiation. Interestingly, some studies suggest that p53 facilitates cell differentiation, whereas others claim that it suppresses differentiation. Therefore, it is critical to evaluate whether this inconsistency represents an authentic differential p53 activity manifested in the various differentiation programs.
Methodology/Principal Findings
To clarify this important issue, we conducted a comparative study of several mesenchymal differentiation programs. The effects of p53 knockdown or enhanced activity were analyzed in mouse and human mesenchymal cells, representing various stages of several differentiation programs. We found that p53 down-regulated the expression of master differentiation-inducing transcription factors, thereby inhibiting osteogenic, adipogenic and smooth muscle differentiation of multiple mesenchymal cell types. In contrast, p53 is essential for skeletal muscle differentiation and osteogenic re-programming of skeletal muscle committed cells.
Conclusions
These comparative studies suggest that, depending on the specific cell type and the specific differentiation program, p53 may exert a positive or a negative effect, and thus can be referred as a “guardian of differentiation” at large.
doi:10.1371/journal.pone.0003707
PMCID: PMC2577894  PMID: 19002260
5.  Dynamic Sorting of Nuclear Components into Distinct Nucleolar Caps during Transcriptional Inhibition 
Molecular Biology of the Cell  2005;16(5):2395-2413.
Nucleolar segregation is observed under some physiological conditions of transcriptional arrest. This process can be mimicked by transcriptional arrest after actinomycin D treatment leading to the segregation of nucleolar components and the formation of unique structures termed nucleolar caps surrounding a central body. These nucleolar caps have been proposed to arise from the segregation of nucleolar components. We show that contrary to prevailing notion, a group of nucleoplasmic proteins, mostly RNA binding proteins, relocalized from the nucleoplasm to a specific nucleolar cap during transcriptional inhibition. For instance, an exclusively nucleoplasmic protein, the splicing factor PSF, localized to nucleolar caps under these conditions. This structure also contained pre-rRNA transcripts, but other caps contained either nucleolar proteins, PML, or Cajal body proteins and in addition nucleolar or Cajal body RNAs. In contrast to the capping of the nucleoplasmic components, nucleolar granular component proteins dispersed into the nucleoplasm, although at least two (p14/ARF and MRP RNA) were retained in the central body. The nucleolar caps are dynamic structures as determined using photobleaching and require energy for their formation. These findings demonstrate that the process of nucleolar segregation and capping involves energy-dependent repositioning of nuclear proteins and RNAs and emphasize the dynamic characteristics of nuclear domain formation in response to cellular stress.
doi:10.1091/mbc.E04-11-0992
PMCID: PMC1087244  PMID: 15758027
6.  Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function 
Journal of Clinical Investigation  2000;106(11):1331-1339.
The chemokine stromal-derived factor-1 (SDF-1) controls many aspects of stem cell function. Details of its regulation and sites of production are currently unknown. We report that in the bone marrow, SDF-1 is produced mainly by immature osteoblasts and endothelial cells. Conditioning with DNA-damaging agents (ionizing irradiation, cyclophosphamide, and 5-fluorouracil) caused an increase in SDF-1 expression and in CXCR4-dependent homing and repopulation by human stem cells transplanted into NOD/SCID mice. Our findings suggest that immature osteoblasts and endothelial cells control stem cell homing, retention, and repopulation by secreting SDF-1, which also participates in host defense responses to DNA damage.
PMCID: PMC381461  PMID: 11104786
7.  Nuclear Relocalization of the Pre-mRNA Splicing Factor PSF during Apoptosis Involves Hyperphosphorylation, Masking of Antigenic Epitopes, and Changes in Protein Interactions 
Molecular Biology of the Cell  2001;12(8):2328-2340.
The spatial nuclear organization of regulatory proteins often reflects their functional state. PSF, a factor essential for pre-mRNA splicing, is visualized by the B92 mAb as discrete nuclear foci, which disappeared during apoptosis. Because this mode of cell death entails protein degradation, it was considered that PSF, which like other splicing factors is sensitive to proteolysis, might be degraded. Nonetheless, during the apoptotic process, PSF remained intact and was N-terminally hyperphosphorylated on serine and threonine residues. Retarded gel migration profiles suggested differential phosphorylation of the molecule in mitosis vs. apoptosis and under-phosphorylation during blockage of cells at G1/S. Experiments with the use of recombinant GFP-tagged PSF provided evidence that in the course of apoptosis the antigenic epitopes of PSF are masked and that PSF reorganizes into globular nuclear structures. In apoptotic cells, PSF dissociated from PTB and bound new partners, including the U1–70K and SR proteins and therefore may acquire new functions.
PMCID: PMC58597  PMID: 11514619

Results 1-7 (7)