Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells 
Leukemia  2011;25(8):1286-1296.
Steady-state egress of hematopoietic progenitor cells can be rapidly amplified by mobilizing agents such as AMD3100, the mechanism, however, is poorly understood. We report that AMD3100 increased the homeostatic release of the chemokine SDF-1 to the circulation in mice and non-human primates. Neutralizing antibodies against CXCR4 or SDF-1 inhibited both steady-state and AMD3100-induced SDF-1 release and reduced egress of murine progenitor cells over mature leukocytes. Intra-bone injection of biotinylated SDF-1 also enhanced release of this chemokine and murine progenitor cell mobilization. AMD3100 directly induced SDF-1 release from CXCR4+ human bone marrow osteoblasts and endothelial cells and activated uPA in a CXCR4/JNK-dependent manner. Additionally, ROS inhibition reduced AMD3100-induced SDF-1 release, activation of circulating uPA and mobilization of progenitor cells. Norepinephrine treatment, mimicking acute stress, rapidly increased SDF-1 release and progenitor cell mobilization, while β2-adrenergic antagonist inhibited both steady-state and AMD3100-induced SDF-1 release and progenitor cell mobilization in mice. In conclusion, this study reveals that SDF-1 release from bone marrow stromal cells to the circulation emerges as a pivotal mechanism essential for steady state egress and rapid mobilization of hematopoietic progenitor cells, but not mature leukocytes.
PMCID: PMC4175714  PMID: 21494253
Rapid mobilization; AMD3100; catecholamines; uPA; SDF-1/CXCR4; hematopoietic progenitor cells
2.  Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling 
Pharmaceuticals  2013;6(9):1145-1169.
Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations.
PMCID: PMC3818832  PMID: 24276423
hematopoietic stem cells; CXCL12/CXCR4; S1P; mobilization; bone remodeling
4.  GSK3β regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement 
The Journal of Clinical Investigation  2013;123(4):1705-1717.
Regulation of hematopoietic stem and progenitor cell (HSPC) steady-state egress from the bone marrow (BM) to the circulation is poorly understood. While glycogen synthase kinase-3β (GSK3β) is known to participate in HSPC proliferation, we revealed an unexpected role in the preferential regulation of CXCL12-induced migration and steady-state egress of murine HSPCs, including long-term repopulating HSCs, over mature leukocytes. HSPC egress, regulated by circadian rhythms of CXCL12 and CXCR4 levels, correlated with dynamic expression of GSK3β in the BM. Nevertheless, GSK3β signaling was CXCL12/CXCR4 independent, suggesting that synchronization of both pathways is required for HSPC motility. Chemotaxis of HSPCs expressing higher levels of GSK3β compared with mature cells was selectively enhanced by stem cell factor–induced activation of GSK3β. Moreover, HSPC motility was regulated by norepinephrine and insulin-like growth factor-1 (IGF-1), which increased or reduced, respectively, GSK3β expression in BM HSPCs and their subsequent egress. Mechanistically, GSK3β signaling promoted preferential HSPC migration by regulating actin rearrangement and microtubuli turnover, including CXCL12-induced actin polarization and polymerization. Our study identifies a previously unknown role for GSK3β in physiological HSPC motility, dictating an active, rather than a passive, nature for homeostatic egress from the BM reservoir to the blood circulation.
PMCID: PMC3613906  PMID: 23478410
5.  CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules 
The Journal of Experimental Medicine  2008;205(10):2381-2395.
The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor κB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.
PMCID: PMC2556782  PMID: 18779349
6.  MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization  
The mechanisms governing hematopoietic progenitor cell mobilization are not fully understood. We report higher membrane type 1–MMP (MT1-MMP) and lower expression of the MT1-MMP inhibitor, reversion-inducing cysteine-rich protein with Kazal motifs (RECK), on isolated circulating human CD34+ progenitor cells compared with immature BM cells. The expression of MT1-MMP correlated with clinical mobilization of CD34+ cells in healthy donors and patients with lymphoid malignancies. Treatment with G-CSF further increased MT1-MMP and decreased RECK expression in human and murine hematopoietic cells in a PI3K/Akt-dependent manner, resulting in elevated MT1-MMP activity. Blocking MT1-MMP function by Abs or siRNAs impaired chemotaxis and homing of G-CSF–mobilized human CD34+ progenitors. The mobilization of immature and maturing human progenitors in chimeric NOD/SCID mice by G-CSF was inhibited by anti–MT1-MMP treatment, while RECK neutralization promoted motility and egress of BM CD34+ cells. BM c-kit+ cells from MT1-MMP–deficient mice also exhibited inferior chemotaxis, reduced homing and engraftment capacities, and impaired G-CSF–induced mobilization in murine chimeras. Membranal CD44 cleavage by MT1-MMP was enhanced following G-CSF treatment, reducing CD34+ cell adhesion. Accordingly, CD44-deficient mice had a higher frequency of circulating progenitors. Our results reveal that the motility, adhesion, homing, and mobilization of human hematopoietic progenitor cells are regulated in a cell-autonomous manner by dynamic and opposite changes in MT1-MMP and RECK expression.
PMCID: PMC2648678  PMID: 19197139
7.  Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells 
Journal of Clinical Investigation  2005;115(1):168-176.
The chemokine stromal cell–derived factor–1 (SDF-1) and its receptor, CXCR4, play a major role in migration, retention, and development of hematopoietic progenitors in the bone marrow. We report the direct involvement of atypical PKC-ζ in SDF-1 signaling in immature human CD34+-enriched cells and in leukemic pre-B acute lymphocytic leukemia (ALL) G2 cells. Chemotaxis, cell polarization, and adhesion of CD34+ cells to bone marrow stromal cells were found to be PKC-ζ dependent. Overexpression of PKC-ζ in G2 and U937 cells led to increased directional motility to SDF-1. Interestingly, impaired SDF-1–induced migration of the pre-B ALL cell line B1 correlated with reduced PKC-ζ expression. SDF-1 triggered PKC-ζ phosphorylation, translocation to the plasma membrane, and kinase activity. Furthermore we identified PI3K as an activator of PKC-ζ, and Pyk-2 and ERK1/2 as downstream targets of PKC-ζ. SDF-1–induced proliferation and MMP-9 secretion also required PKC-ζ activation. Finally, we showed that in vivo engraftment, but not homing, of human CD34+-enriched cells to the bone marrow of NOD/SCID mice was PKC-ζ dependent and that injection of mice with inhibitory PKC-ζ pseudosubstrate peptides resulted in mobilization of murine progenitors. Our results demonstrate a central role for PKC-ζ in SDF-1–dependent regulation of hematopoietic stem and progenitor cell motility and development.
PMCID: PMC539190  PMID: 15630457
8.  HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver 
Journal of Clinical Investigation  2003;112(2):160-169.
Hematopoietic stem cells rarely contribute to hepatic regeneration, however, the mechanisms governing their homing to the liver, which is a crucial first step, are poorly understood. The chemokine stromal cell–derived factor-1 (SDF-1), which attracts human and murine progenitors, is expressed by liver bile duct epithelium. Neutralization of the SDF-1 receptor CXCR4 abolished homing and engraftment of the murine liver by human CD34+ hematopoietic progenitors, while local injection of human SDF-1 increased their homing. Engrafted human cells were localized in clusters surrounding the bile ducts, in close proximity to SDF-1–expressing epithelial cells, and differentiated into albumin-producing cells. Irradiation or inflammation increased SDF-1 levels and hepatic injury induced MMP-9 activity, leading to both increased CXCR4 expression and SDF-1–mediated recruitment of hematopoietic progenitors to the liver. Unexpectedly, HGF, which is increased following liver injury, promoted protrusion formation, CXCR4 upregulation, and SDF-1–mediated directional migration by human CD34+ progenitors, and synergized with stem cell factor. Thus, stress-induced signals, such as increased expression of SDF-1, MMP-9, and HGF, recruit human CD34+ progenitors with hematopoietic and/or hepatic-like potential to the liver of NOD/SCID mice. Our results suggest the potential of hematopoietic CD34+/CXCR4+cells to respond to stress signals from nonhematopoietic injured organs as an important mechanism for tissue targeting and repair.
PMCID: PMC164291  PMID: 12865405
9.  Subsecond Induction of α4 Integrin Clustering by Immobilized Chemokines Stimulates Leukocyte Tethering and Rolling on Endothelial Vascular Cell Adhesion Molecule 1 under Flow Conditions 
Leukocyte recruitment to target tissue is initiated by weak rolling attachments to vessel wall ligands followed by firm integrin-dependent arrest triggered by endothelial chemokines. We show here that immobilized chemokines can augment not only arrest but also earlier integrin-mediated capture (tethering) of lymphocytes on inflamed endothelium. Furthermore, when presented in juxtaposition to vascular cell adhesion molecule 1 (VCAM-1), the endothelial ligand for the integrin very late antigen 4 (VLA-4, α4β1), chemokines rapidly augment reversible lymphocyte tethering and rolling adhesions on VCAM-1. Chemokines potentiate VLA-4 tethering within <0.1 s of contact through Gi protein signaling, the fastest inside-out integrin signaling events reported to date. Although VLA-4 affinity is not altered upon chemokine signaling, subsecond VLA-4 clustering at the leukocyte-substrate contact zone results in enhanced leukocyte avidity to VCAM-1. Endothelial chemokines thus regulate all steps in adhesive cascades that control leukocyte recruitment at specific vascular beds.
PMCID: PMC2193239  PMID: 10952719
adhesion; integrin; endothelium; chemokine; shear flow
10.  Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function 
Journal of Clinical Investigation  2000;106(11):1331-1339.
The chemokine stromal-derived factor-1 (SDF-1) controls many aspects of stem cell function. Details of its regulation and sites of production are currently unknown. We report that in the bone marrow, SDF-1 is produced mainly by immature osteoblasts and endothelial cells. Conditioning with DNA-damaging agents (ionizing irradiation, cyclophosphamide, and 5-fluorouracil) caused an increase in SDF-1 expression and in CXCR4-dependent homing and repopulation by human stem cells transplanted into NOD/SCID mice. Our findings suggest that immature osteoblasts and endothelial cells control stem cell homing, retention, and repopulation by secreting SDF-1, which also participates in host defense responses to DNA damage.
PMCID: PMC381461  PMID: 11104786
11.  The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow 
Journal of Clinical Investigation  1999;104(9):1199-1211.
The chemokine SDF-1 plays a central role in the repopulation of the bone marrow (BM) by circulating CD34+ progenitors, but the mechanisms of its action remain obscure. To extravasate to target tissue, a blood-borne cell must arrest firmly on vascular endothelium. Murine hematopoietic progenitors were recently shown in vivo to roll along BM microvessels that display selectins and integrins. We now show that SDF-1 is constitutively expressed by human BM endothelium. In vitro, human CD34+ cells establish efficient rolling on P-selectin, E-selectin, and the CD44 ligand hyaluronic acid under physiological shear flow. ICAM-1 alone did not tether CD34+ cells under flow, but, in the presence of surface-bound SDF-1, CD34+ progenitors rolling on endothelial selectin rapidly developed firm adhesion to the endothelial surface, mediated by an interaction between ICAM-1 and its integrin ligand, which coimmobilized with SDF-1. Human CD34+ cells accumulated efficiently on TNF-activated human umbilical cord endothelial cells in the absence of SDF-1, but they required immobilized SDF-1 to develop firm integrin-mediated adhesion and spreading. In the absence of selectins, SDF-1 also promoted VLA-4–mediated, Gi protein–dependent tethering and firm adhesion to VCAM-1 under shear flow. To our knowledge, this is the first demonstration that SDF-1 expressed on vascular endothelium is crucial for translating rolling adhesion of CD34+ progenitors into firm adhesion by increasing the adhesiveness of the integrins VLA-4 and LFA-1 to their respective endothelial ligands, VCAM-1 and ICAM-1.
PMCID: PMC409822  PMID: 10545519

Results 1-11 (11)