Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  The approved pediatric drug suramin identified as a clinical candidate for the treatment of EV71 infection—suramin inhibits EV71 infection in vitro and in vivo 
Enterovirus 71 (EV71) causes severe central nervous system infections, leading to cardiopulmonary complications and death in young children. There is an urgent unmet medical need for new pharmaceutical agents to control EV71 infections. Using a multidisciplinary approach, we found that the approved pediatric antiparasitic drug suramin blocked EV71 infectivity by a novel mechanism of action that involves binding of the naphtalentrisulonic acid group of suramin to the viral capsid. Moreover, we demonstrate that when suramin is used in vivo at doses equivalent to or lower than the highest dose already used in humans, it significantly decreased mortality in mice challenged with a lethal dose of EV71 and peak viral load in adult rhesus monkeys. Thus, suramin inhibits EV71 infection by neutralizing virus particles prior to cell attachment. Consequently, these findings identify suramin as a clinical candidate for further development as a therapeutic or prophylactic treatment for severe EV71 infection.
PMCID: PMC4185360
anti-viral; drug discovery; enterovirus 71; hand, foot and mouth disease; suramin
2.  Homeostatic and tissue reparation defaults in mice carrying selective genetic invalidation of CXCL12/proteoglycan interactions 
Circulation  2012;126(15):1882-1895.
Interaction with heparan sulfate (HS) proteoglycans is supposed to provide chemokines with the capacity to immobilize on cell surface and extracellular matrix for accomplishing both tissue homing and signalling of attracted cells. However, the consequences of the exclusive invalidation of such interaction on the roles played by endogenous chemokines in vivo, remains unascertained.
Methods and results
We engineered a mouse carrying a Cxcl12 gene (Cxcl12Gagtm) mutations that preclude interactions with HS structures while they do not affect CXCR4-dependent cell-signalling of CXCL12 isoforms (α,β,γ). Cxcl12Gagtm/Gagtm mice develop normally, express normal levels of total and isoform-specific Cxcl12 mRNA and show increased counting of circulating CD34+ haematopoietic precursor cells. Following induced acute ischemia, a marked impaired capacity to support revascularization was observed in Cxcl12Gagtm/Gagtm animals associated to a reduced number of infiltrating cells in the ischemic tissue despite the massive expression of CXCL12 isoforms. Importantly, exogenous administration of CXCL12γ, which binds HS with the highest affinity ever reported for a cytokine, fully restores vascular growth, while HS-binding CXCL12γ, mutants failed to promote revascularization in Cxcl12Gagtm/Gagtm animals.
These findings prove the role played by HS-interactions in the functions of CXCL12 both in homeostasis and physiopathological settings and document originally the paradigm of chemokine-immobilisation in vivo.
PMCID: PMC3928557  PMID: 23035208
Animals; Chemokine CXCL12; biosynthesis; genetics; Heparin; analogs & derivatives; metabolism; Hindlimb; blood supply; Homeostasis; Ischemia; genetics; metabolism; Mice; Models, Animal; Muscle, Skeletal; blood supply; Neovascularization, Physiologic; genetics; Protein Isoforms; genetics; Proteoglycans; metabolism; RNA, Messenger; Transcription, Genetic; Angiogenesis; Ischemia; Chemokines; Proteoglycans; CXCL12
3.  Enhancement of Chemokine Function as an Immunomodulatory Strategy Employed by Human Herpesviruses 
PLoS Pathogens  2012;8(2):e1002497.
Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human neurotropic pathogens that cause a variety of diseases, including lethal encephalitis. The relationship between HSV and the host immune system is one of the main determinants of the infection outcome. Chemokines play relevant roles in antiviral response and immunopathology, but the modulation of chemokine function by HSV is not well understood. We have addressed the modulation of chemokine function mediated by HSV. By using surface plasmon resonance and crosslinking assays we show that secreted glycoprotein G (SgG) from both HSV-1 and HSV-2 binds chemokines with high affinity. Chemokine binding activity was also observed in the supernatant of HSV-2 infected cells and in the plasma membrane of cells infected with HSV-1 wild type but not with a gG deficient HSV-1 mutant. Cell-binding and competition experiments indicate that the interaction takes place through the glycosaminoglycan-binding domain of the chemokine. The functional relevance of the interaction was determined both in vitro, by performing transwell assays, time-lapse microscopy, and signal transduction experiments; and in vivo, using the air pouch model of inflammation. Interestingly, and in contrast to what has been observed for previously described viral chemokine binding proteins, HSV SgGs do not inhibit chemokine function. On the contrary, HSV SgGs enhance chemotaxis both in vitro and in vivo through increasing directionality, potency and receptor signaling. This is the first report, to our knowledge, of a viral chemokine binding protein from a human pathogen that increases chemokine function and points towards a previously undescribed strategy of immune modulation mediated by viruses.
Author Summary
Chemokines are chemotactic cytokines that direct the flux of leukocytes to the site of injury and infection, playing a relevant role in the antiviral response. An uncontrolled, unorganized chemokine response is beneath the onset and maintenance of several immunopathologies. During millions of years of evolution, viruses have developed strategies to modulate the host immune system. One of such strategies consists on the secretion of viral proteins that bind to and inhibit the function of chemokines. However, the modulation of the chemokine network mediated by the highly prevalent human pathogen herpes simplex virus (HSV) is unknown. We have addressed this issue and show that HSV-1, causing cold sores and encephalitis and HSV-2, causing urogenital tract infections, interact with chemokines. We determined that the viral protein responsible for such activity is glycoprotein G (gG). gG binds chemokines with high affinity and, in contrast to all viral chemokine binding proteins described to date that inhibit chemokine function, we found that HSV gG potentiates chemokine function in vitro and in vivo. The implications of such potentiation in HSV viral cycle, pathogenesis and chemokine function are discussed.
PMCID: PMC3271085  PMID: 22319442
4.  ISG15 Is Critical in the Control of Chikungunya Virus Infection Independent of UbE1L Mediated Conjugation 
PLoS Pathogens  2011;7(10):e1002322.
Chikungunya virus (CHIKV) is a re-emerging alphavirus that has caused significant disease in the Indian Ocean region since 2005. During this outbreak, in addition to fever, rash and arthritis, severe cases of CHIKV infection have been observed in infants. Challenging the notion that the innate immune response in infants is immature or defective, we demonstrate that both human infants and neonatal mice generate a robust type I interferon (IFN) response during CHIKV infection that contributes to, but is insufficient for, the complete control of infection. To characterize the mechanism by which type I IFNs control CHIKV infection, we evaluated the role of ISG15 and defined it as a central player in the host response, as neonatal mice lacking ISG15 were profoundly susceptible to CHIKV infection. Surprisingly, UbE1L−/− mice, which lack the ISG15 E1 enzyme and therefore are unable to form ISG15 conjugates, displayed no increase in lethality following CHIKV infection, thus pointing to a non-classical role for ISG15. No differences in viral loads were observed between wild-type (WT) and ISG15−/− mice, however, a dramatic increase in proinflammatory cytokines and chemokines was observed in ISG15−/− mice, suggesting that the innate immune response to CHIKV contributes to their lethality. This study provides new insight into the control of CHIKV infection, and establishes a new model for how ISG15 functions as an immunomodulatory molecule in the blunting of potentially pathologic levels of innate effector molecules during the host response to viral infection.
Author Summary
Type I interferon plays a critical role in the host defense to viral infection. Signaling through the type I IFN receptor allows for the induction of hundreds of interferon stimulated genes (ISGs) that generate an antiviral state within host cells. The ubiquitin-like molecule ISG15 has been shown to play an important role during multiple viral infections, including influenza virus infection. To date, the ability of ISG15 to protect against viral infection has been shown to be dependent on its ability to covalently bind (or conjugate) to target proteins, including the binding of viral proteins. We investigated the importance of the type I interferon response and ISG15 conjugation in a neonatal model of Chikungunya virus infection, a re-emerging human pathogen in the Indian Ocean region. Remarkably, the role of ISG15 during CHIKV infection appears to be conjugation independent, suggesting a non-classical role for ISG15 during viral infection. Our data also suggests that ISG15 plays an immunoregulatory role, as opposed to having direct antiviral function. Our CHIKV model may provide an opportunity to identify a novel mechanism by which ISG15 contributes to the innate immune response to viral infection.
PMCID: PMC3197620  PMID: 22028657
5.  Appraising the Roles of CBLL1 and the Ubiquitin/Proteasome System for Flavivirus Entry and Replication▿  
Journal of Virology  2010;85(6):2980-2989.
The ubiquitin ligase CBLL1 (also known as HAKAI) has been proposed to be a critical cellular factor exploited by West Nile virus (WNV) for productive infection. CBLL1 has emerged as a major hit in a recent RNA interference screen designed to identify cellular factors required for the early stages of the WNV life cycle. Follow-up experiments showed that HeLa cells knocked down for CBLL1 by a small interfering RNA (siRNA) failed to internalize WNV particles and resisted infection. Furthermore, depletion of a free-ubiquitin pool by the proteasome inhibitor MG132 abolished WNV endocytosis, suggesting that CBLL1 acts in concert with the ubiquitin proteasome system to mediate virus internalization. Here, we examined the effect of CBLL1 knockdown and proteasome inhibitors on infection by WNV and other flaviviruses. We identified new siRNAs that repress the CBLL1 protein and strongly inhibit the endocytosis of Listeria monocytogenes, a bacterial pathogen known to require CBLL1 to invade host cells. Strikingly, however, we detected efficient WNV, dengue virus, and yellow fever virus infection of human cells, despite potent downregulation of CBLL1 by RNA interference. In addition, we found that the proteasome inhibitors MG132 and lactacystin did not affect WNV internalization but strongly repressed flavivirus RNA translation and replication. Together, these data do not support a requirement for CBLL1 during flavivirus entry and rather suggest an essential role of the ubiquitin/proteasome pathway for flavivirus genome amplification.
PMCID: PMC3067953  PMID: 21191016
6.  CXCL12 expression by healthy and malignant ovarian epithelial cells 
BMC Cancer  2011;11:97.
CXCL12 has been widely reported to play a biologically relevant role in tumor growth and spread. In epithelial ovarian cancer (EOC), CXCL12 enhances tumor angiogenesis and contributes to the immunosuppressive network. However, its prognostic significance remains unclear. We thus compared CXCL12 status in healthy and malignant ovaries, to assess its prognostic value.
Immunohistochemistry was used to analyze CXCL12 expression in the reproductive tracts, including the ovaries and fallopian tubes, of healthy women, in benign and borderline epithelial tumors, and in a series of 183 tumor specimens from patients with advanced primary EOC enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin/gemcitabine-based chemotherapy (GINECO study). Univariate COX model analysis was performed to assess the prognostic value of clinical and biological variables. Kaplan-Meier methods were used to generate progression-free and overall survival curves.
Epithelial cells from the surface of the ovary and the fallopian tubes stained positive for CXCL12, whereas the follicles within the ovary did not. Epithelial cells in benign, borderline and malignant tumors also expressed CXCL12. In EOC specimens, CXCL12 immunoreactivity was observed mostly in epithelial tumor cells. The intensity of the signal obtained ranged from strong in 86 cases (47%) to absent in 18 cases (<10%). This uneven distribution of CXCL12 did not reflect the morphological heterogeneity of EOC. CXCL12 expression levels were not correlated with any of the clinical parameters currently used to determine EOC prognosis or with HER2 status. They also had no impact on progression-free or overall survival.
Our findings highlight the previously unappreciated constitutive expression of CXCL12 on healthy epithelia of the ovary surface and fallopian tubes, indicating that EOC may originate from either of these epithelia. We reveal that CXCL12 production by malignant epithelial cells precedes tumorigenesis and we confirm in a large cohort of patients with advanced EOC that CXCL12 expression level in EOC is not a valuable prognostic factor in itself.
Trial Registration NCT00052468
PMCID: PMC3070683  PMID: 21410972
7.  SDF-1/CXCL12 Production by Mature Dendritic Cells Inhibits the Propagation of X4-Tropic HIV-1 Isolates at the Dendritic Cell-T-Cell Infectious Synapse▿  
Journal of Virology  2010;84(9):4341-4351.
An efficient mode of HIV-1 infection of CD4 lymphocytes occurs in the context of infectious synapses, where dendritic cells (DCs) enhance HIV-1 transmission to lymphocytes. Emergence of CXCR4-using (X4) HIV-1 strains occurs late in the course of HIV-1 infection, suggesting that a selective pressure suppresses the switch from CCR5 (R5) to X4 tropism. We postulated that SDF-1/CXCL12 chemokine production by DCs could be involved in this process. We observed CXCL12 expression by DCs in vivo in the parafollicular compartment of lymph nodes. The role of mature monocyte-derived dendritic cells (mMDDCs) in transmitting R5 and X4 HIV-1 strains to autologous lymphocytes was studied using an in vitro infection system. Using this model, we observed a strong enhancement of lymphocyte infection with R5, but not with X4, viruses. This lack of DC-mediated enhancement in the propagation of X4 viruses was proportional to CXCL12 production by mMDDCs. When CXCL12 activity was inhibited with specific neutralizing antibodies or small interfering RNAs (siRNAs), the block to mMDDC transfer of X4 viruses to lymphocytes was removed. These results suggest that CXCL12 production by DCs resident in lymph nodes represents an antiviral mechanism in the context of the infectious synapse that could account for the delayed appearance of X4 viruses.
PMCID: PMC2863755  PMID: 20181695
8.  Type I IFN controls chikungunya virus via its action on nonhematopoietic cells 
Chikungunya virus (CHIKV) is the causative agent of an outbreak that began in La Réunion in 2005 and remains a major public health concern in India, Southeast Asia, and southern Europe. CHIKV is transmitted to humans by mosquitoes and the associated disease is characterized by fever, myalgia, arthralgia, and rash. As viral load in infected patients declines before the appearance of neutralizing antibodies, we studied the role of type I interferon (IFN) in CHIKV pathogenesis. Based on human studies and mouse experimentation, we show that CHIKV does not directly stimulate type I IFN production in immune cells. Instead, infected nonhematopoietic cells sense viral RNA in a Cardif-dependent manner and participate in the control of infection through their production of type I IFNs. Although the Cardif signaling pathway contributes to the immune response, we also find evidence for a MyD88-dependent sensor that is critical for preventing viral dissemination. Moreover, we demonstrate that IFN-α/β receptor (IFNAR) expression is required in the periphery but not on immune cells, as IFNAR−/−→WT bone marrow chimeras are capable of clearing the infection, whereas WT→IFNAR−/− chimeras succumb. This study defines an essential role for type I IFN, produced via cooperation between multiple host sensors and acting directly on nonhematopoietic cells, in the control of CHIKV.
PMCID: PMC2822618  PMID: 20123960
10.  The CXCL12γ Chemokine Displays Unprecedented Structural and Functional Properties that Make It a Paradigm of Chemoattractant Proteins 
PLoS ONE  2008;3(7):e2543.
The CXCL12γ chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12γ is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12γ through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12γ both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12γ strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12γ one of the higher affinity for HS (Kd = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12γ to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12α. In good agreement, mutant CXCL12γ chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12γ features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12γ the paradigm of haptotactic proteins, which regulate essential homeostatic functions by promoting directional migration and selective tissue homing of cells.
PMCID: PMC2481281  PMID: 18648536
11.  An Ectromelia Virus Protein That Interacts with Chemokines through Their Glycosaminoglycan Binding Domain▿  
Journal of Virology  2007;82(2):917-926.
Poxviruses encode a number of secreted virulence factors that modulate the host immune response. The vaccinia virus A41 protein is an immunomodulatory protein with amino acid sequence similarity to the 35-kDa chemokine binding protein, but the host immune molecules targeted by A41 have not been identified. We report here that the vaccinia virus A41 ortholog encoded by ectromelia virus, a poxvirus pathogen of mice, named E163 in the ectromelia virus Naval strain, is a secreted 31-kDa glycoprotein that selectively binds a limited number of CC and CXC chemokines with high affinity. A detailed characterization of the interaction of ectromelia virus E163 with mutant forms of the chemokines CXCL10 and CXCL12α indicated that E163 binds to the glycosaminoglycan binding site of the chemokines. This suggests that E163 inhibits the interaction of chemokines with glycosaminoglycans and provides a mechanism by which E163 prevents chemokine-induced leukocyte migration to the sites of infection. In addition to interacting with chemokines, E163 can interact with high affinity with glycosaminoglycan molecules, enabling E163 to attach to cell surfaces and to remain in the vicinity of the sites of viral infection. These findings identify E163 as a new chemokine binding protein in poxviruses and provide a molecular mechanism for the immunomodulatory activity previously reported for the vaccinia virus A41 ortholog. The results reported here also suggest that the cell surface and extracellular matrix are important targeting sites for secreted poxvirus immune modulators.
PMCID: PMC2224573  PMID: 18003726
12.  Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling 
The Journal of Clinical Investigation  2008;118(3):1074-1084.
Leukocytes from individuals with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency, and bearing a wild-type CXCR4 ORF (WHIMWT) display impaired CXCR4 internalization and desensitization upon exposure to CXCL12. The resulting enhanced CXCR4-dependent responses, including chemotaxis, probably impair leukocyte trafficking and account for the immunohematologic clinical manifestations of WHIM syndrome. We provided here evidence that GPCR kinase-3 (GRK3) specifically regulates CXCL12-promoted internalization and desensitization of CXCR4. GRK3-silenced control cells displayed altered CXCR4 attenuation and enhanced chemotaxis, as did WHIMWT cells. These findings identified GRK3 as a negative regulator of CXCL12-induced chemotaxis and as a candidate responsible for CXCR4 dysfunction in WHIMWT leukocytes. Consistent with this, we showed that GRK3 overexpression in both leukocytes and skin fibroblasts from 2 unrelated WHIMWT patients restored CXCL12-induced internalization and desensitization of CXCR4 and normalized chemotaxis. Moreover, we found in cells derived from one patient a profound and selective decrease in GRK3 products that probably resulted from defective mRNA synthesis. Taken together, these results have revealed a pivotal role for GRK3 in regulating CXCR4 attenuation and have provided a mechanistic link between the GRK3 pathway and the CXCR4-related WHIMWT disorder.
PMCID: PMC2242619  PMID: 18274673
13.  Multidisciplinary Prospective Study of Mother-to-Child Chikungunya Virus Infections on the Island of La Réunion 
PLoS Medicine  2008;5(3):e60.
An outbreak of chikungunya virus affected over one-third of the population of La Réunion Island between March 2005 and December 2006. In June 2005, we identified the first case of mother-to-child chikungunya virus transmission at the Groupe Hospitalier Sud-Réunion level-3 maternity department. The goal of this prospective study was to characterize the epidemiological, clinical, biological, and radiological features and outcomes of all the cases of vertically transmitted chikungunya infections recorded at our institution during this outbreak.
Methods and Findings
Over 22 mo, 7,504 women delivered 7,629 viable neonates; 678 (9.0%) of these parturient women were infected (positive RT-PCR or IgM serology) during antepartum, and 61 (0.8%) in pre- or intrapartum. With the exception of three early fetal deaths, vertical transmission was exclusively observed in near-term deliveries (median duration of gestation: 38 wk, range 35–40 wk) in the context of intrapartum viremia (19 cases of vertical transmission out of 39 women with intrapartum viremia, prevalence rate 0.25%, vertical transmission rate 48.7%). Cesarean section had no protective effect on transmission. All infected neonates were asymptomatic at birth, and median onset of neonatal disease was 4 d (range 3–7 d). Pain, prostration, and fever were present in 100% of cases and thrombocytopenia in 89%. Severe illness was observed in ten cases (52.6%) and mainly consisted of encephalopathy (n = 9; 90%). These nine children had pathologic MRI findings (brain swelling, n = 9; cerebral hemorrhages, n = 2), and four evolved towards persistent disabilities.
Mother-to-child chikungunya virus transmission is frequent in the context of intrapartum maternal viremia, and often leads to severe neonatal infection. Chikungunya represents a substantial risk for neonates born to viremic parturients that should be taken into account by clinicians and public health authorities in the event of a chikungunya outbreak.
In a prospective study on the island of La Réunion, Marc Lecuit and colleagues find frequent transmission of Chikungunya virus by viremic mothers giving birth during an outbreak, resulting in serious infant illness.
Editors' Summary
Chikungunya virus, an emerging infectious agent that is transmitted by day-biting mosquitoes, was first isolated from a patient in Tanzania in the early 1950s. Since then, major outbreaks of chikungunya fever have occurred throughout sub-Saharan Africa and in Southeast Asia, India, and the Western Pacific, usually at intervals of about 7–8 years. The virus causes fever, rash, severe joint and muscle pains, and sometimes arthritis (joint inflammation). These symptoms develop within 3–7 days of being bitten by an infected mosquito. Most people recover fully within a few weeks, but joint pain can sometimes continue for years. There is no treatment for chikungunya fever, but the symptoms can be eased with anti-inflammatory drugs. Preventative measures include covering arms and legs and using insecticides to avoid insect bites and depriving the mosquitoes of their breeding sites by draining standing water from man-made containers near human dwellings.
Why Was This Study Done?
In 2005, chikungunya fever appeared for the first time on several islands in the Indian Ocean. On La Réunion Island, the disease affected 300,000 people—more than one-third of the population—between March 2005 and December 2006. In June 2005, clinicians identified the first case of mother-to-child chikungunya virus transmission (vertical transmission). Public-health officials and clinicians need to know more about how often vertical transmission occurs and its clinical implications to help them prepare for future chikungunya fever outbreaks. In this study, the researchers identify and characterize all the cases of vertical chikungunya virus transmission that occurred at the largest hospital on La Réunion Island during the 2005–6 outbreak.
What Did the Researchers Do and Find?
The researchers enrolled all 7,504 women who gave birth at the hospital during the outbreak and their 7,629 children into their study. They then used “RT-PCR” (which detects the genome of virus particles during an active infection) and “IgM serology” (which looks for an immune response to recent infection) to determine which women had been infected with chikungunya virus during their pregnancy. 678 of the new mothers had been infected sometime between conception and a week before delivery, 22 mothers had been infected between 7 and 3 days before delivery, and 39 had been infected 2 days either side of delivery (the “intrapartum” period). Except for three early fetal deaths that were associated with chikungunya virus infections, vertical transmission was seen only in babies born to mothers infected with the virus intrapartum. 19 of the babies born to these women were infected with the virus—a vertical transmission rate of nearly 50%. The women who transmitted the virus to their offspring had more virus in their placenta than those who did not transmit the infection. Delivery by emergency cesarean section did not prevent transmission. All the infected babies were born healthy but developed fever, weakness, and pain within 3–7 days. In many of them, the number of platelets (clot-forming particles) in their blood also dropped dramatically. Ten babies became seriously ill—nine of them developed brain swelling; two had bleeding into their brain. Four children had lasting disabilities at the end of the study.
What Do These Findings Mean?
These findings show that mother-to-child transmission of chikungunya virus occurs frequently when women are infected with the virus at the time of delivery and that newborn children infected by this route can become very ill. Although these results do not find that cesarean section reduces infection rates, 90% of cesarean sections involving infected infants were performed urgently, rather than planned. The study also provides no information about whether delaying delivery, provided that no fetal distress is observed, until the mother's viral load has decreased might be beneficial. More studies are needed to provide a complete description of both the short-term and long-term effects of chikungunya virus infection in newborn babies, but it is clear that clinicians should monitor babies exposed to chikungunya virus during delivery for a week after their birth. Most importantly, clinicians and public-health officials will need to take account of the threat that the chikungunya virus poses to newborn children whenever and wherever it emerges.
Additional Information.
Please access these Web sites via the online version of this summary at
Read the related PLoS Medicine 10.1371/journal.pmed.0050068
The World Health Organization provides information about chikungunya fever and a brief description of the recent chikungunya outbreak in the Indian Ocean (in English, French, Spanish, Arabic, Chinese, and Russian)
The US Centers for Disease Control and Prevention has a fact sheet on chikungunya fever
The UK Health Protection Agency also provides information about chikungunya virus, including news on recent outbreaks
The French Institut de Veille Sanitaire (Institute for Public Health Surveillance) has a Web page on chikungunya (in French)
The Institut Pasteur has a Web page on chikungunya research (in French and English)
PMCID: PMC2267812  PMID: 18351797
14.  A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease 
PLoS Pathogens  2008;4(2):e29.
Chikungunya virus (CHIKV) is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS) have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT) adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-α/βR+/−) or totally (IFN-α/βR−/−) abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.
Author Summary
Chikungunya virus (CHIKV) is transmitted by mosquito bites. CHIKV has recently re-emerged and is responsible for a massive outbreak in the Indian Ocean region and India. It has also reached Italy, indicating that CHIKV has a great potential to spread globally. Infection from CHIKV typically induces a mild disease in humans, characterized by a flu-like syndrome associated with muscle and joint pain and rash. Cases of severe infection involving the central nervous system (CNS) have recently been described, notably in neonates. We have developed the first animal model for CHIKV infection and studied the pathophysiology of the resulting disease. We show here that mouse neonates are susceptible to CHIKV and neonatal disease severity is age-dependent. Adult mice with a partial or complete defect in type-I interferon pathway develop a mild or severe infection, respectively. In mice with a mild infection, CHIKV primarily targets muscle, joint and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to the CNS. Our work indicates that CHIKV-associated symptoms perfectly match viral tissue and cell tropisms, and demonstrate that the fibroblast is a prominent target cell of CHIKV. It also identifies the neonatal phase and inefficient type-I interferon signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.
PMCID: PMC2242832  PMID: 18282093
15.  The Novel CXCL12γ Isoform Encodes an Unstructured Cationic Domain Which Regulates Bioactivity and Interaction with Both Glycosaminoglycans and CXCR4 
PLoS ONE  2007;2(10):e1110.
CXCL12α, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4) and heparan sulfate (HS). The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12γ, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS.
Methodology/Principal Findings
Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12γ first 68 amino acids adopt a structure closely related to the well described α isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60 % of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM), and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine.
Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the γ isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS could differentially orchestrate the CXCL12 mediated directional cell kinesis.
PMCID: PMC2040504  PMID: 17971873
16.  Characterization of Reemerging Chikungunya Virus 
PLoS Pathogens  2007;3(6):e89.
An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host.
Author Summary
Chikungunya virus (CHIKV) is a reemerging alphavirus responsible for an unprecedented epidemic in countries of the Indian Ocean region, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The most recent epidemic reemergences were documented in Kinshasa, (50,000 estimated cases in 1999–2000), in Indonesia (2001–2003), the Indian Ocean islands of Mayotte, Mauritius, Réunion, and the Seychelles (270,000 cases in 2005–2006 in La Réunion island), and in India (1.4 to 6.5 million estimated cases in 2006–2007). There is a critical lack of knowledge on the biology of CHIKV. In particular, virtually nothing is known about the interaction of CHIKV (and of most alpahaviruses) with human primary cells. We have studied the replication characteristics and the tropism of clinical CHIKV strains from La Réunion. We designed various assays and reagents to follow viral replication, and we report here that adherent cells (epithelial and endothelial cells, primary fibroblasts), as well as macrophages, are sensitive to infection. In contrast, blood cells did not allow viral replication. We also characterized viral entry pathways and sensitivity to interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host. This paper is the result of a collaborative effort between numerous teams from Institut Pasteur, the Groupe Hospitalier Sud Réunion, and other institutions. Our aim was to establish a task force with multiple and complementary expertise on virology, immunology, and cell biology in order to characterize this enigmatic virus.
PMCID: PMC1904475  PMID: 17604450
17.  Infection of Dendritic Cells (DCs), Not DC-SIGN-Mediated Internalization of Human Immunodeficiency Virus, Is Required for Long-Term Transfer of Virus to T Cells 
Journal of Virology  2006;80(6):2949-2957.
The C-type lectin DC-SIGN expressed on immature dendritic cells (DCs) captures human immunodeficiency virus (HIV) particles and enhances the infection of CD4+ T cells. This process, known as trans-enhancement of T-cell infection, has been related to HIV endocytosis. It has been proposed that DC-SIGN targets HIV to a nondegradative compartment within DCs and DC-SIGN-expressing cells, allowing incoming virus to persist for several days before infecting target cells. In this study, we provide several lines of evidence suggesting that intracellular storage of intact virions does not contribute to HIV transmission. We show that endocytosis-defective DC-SIGN molecules enhance T-cell infection as efficiently as their wild-type counterparts, indicating that DC-SIGN-mediated HIV internalization is dispensable for trans-enhancement. Furthermore, using immature DCs that are genetically resistant to infection, we demonstrate that several days after viral uptake, HIV transfer from DCs to T cells requires viral fusion and occurs exclusively through DC infection and transmission of newly synthesized viral particles. Importantly, our results suggest that DC-SIGN participates in this process by cooperating with the HIV entry receptors to facilitate cis-infection of immature DCs and subsequent viral transfer to T cells. We suggest that such a mechanism, rather than intracellular storage of incoming virus, accounts for the long-term transfer of HIV to CD4+ T cells and may contribute to the spread of infection by DCs.
PMCID: PMC1395470  PMID: 16501104
18.  CXCL12 is displayed by rheumatoid endothelial cells through its basic amino-terminal motif on heparan sulfate proteoglycans 
The chemokine CXCL12 (also known as stromal cell-derived factor, SDF-1) is constitutively expressed by stromal resident cells and is involved in the homeostatic and inflammatory traffic of leukocytes. Binding of CXCL12 to glycosaminoglycans on endothelial cells (ECs) is supposed to be relevant to the regulation of leukocyte diapedesis and neoangiogenesis during inflammatory responses. To improve our understanding of the relevance of this process to rheumatoid arthritis (RA), we have studied the mechanisms of presentation of exogenous CXCL12 by cultured RA ECs. RA synovial tissues had higher levels of CXCL12 on the endothelium than osteoarthritis (OA) tissues; in both, CXCL12 colocalized to heparan sulfate proteoglycans (HSPGs) and high endothelial venules. In cultured RA ECs, exogenous CXCL12α was able to bind in a CXCR4-independent manner to surface HSPGs. Desulfation of RA EC HSPGs by pretreatment with sodium chlorate, or by replacing in a synthetic CXCL12α the residues Lys24 and Lys27 by Ser (CXCL12α-K2427S), decreased or abrogated the ability of the chemokine to bind to RA ECs. Ex vivo, synovial ECs from patients with either OA or RA displayed a higher CXCL12-binding capacity than human umbilical vein ECs (HUVECs), and in HUVECs the binding of CXCL12 was increased on exposure to tumor necrosis factor-α or lymphotoxin-α1β2. Our findings indicate that CXCL12 binds to HSPGs on ECs of RA synovium. The phenomenon relates to the interaction of HSPGs with a CXCL12 domain with net positive surface charge located in the first β strand, which encompasses a canonical BXBB HSPG-binding motif. Furthermore, we show that the attachment of CXCL12 to HSPGs is upregulated by inflammatory cytokines. Both the upregulation of a constitutive chemokine during chronic inflammation and the HSPG-dependent immobilization of CXCL12 in EC surfaces are potential sites for therapeutic intervention.
PMCID: PMC1526602  PMID: 16507142
19.  Elastase Release by Transmigrating Neutrophils Deactivates Endothelial-bound SDF-1α and Attenuates Subsequent T Lymphocyte Transendothelial Migration 
Leukocyte trafficking to sites of inflammation follows a defined temporal pattern, and evidence suggests that initial neutrophil transendothelial migration modifies endothelial cell phenotype. We tested the hypothesis that preconditioning of human umbilical vein endothelial cells (HUVEC) by neutrophils would also modify the subsequent transendothelial migration of T lymphocytes across cytokine-stimulated HUVEC in an in vitro flow assay. Using fluorescence microscopy, preconditioning of HUVEC by neutrophils was observed to significantly reduce the extent of subsequent stromal cell–derived factor-1α (SDF-1α [CXCL12])-mediated T lymphocyte transendothelial migration, without reducing accumulation. In contrast, recruitment of a second wave of neutrophils was unaltered. Conditioned medium harvested after transendothelial migration of neutrophils or supernatants from stimulated neutrophils mediated a similar blocking effect, which was negated using a specific neutrophil elastase inhibitor. Furthermore, T lymphocyte transendothelial migration was inhibited by treatment of HUVEC with purified neutrophil elastase, which selectively cleaved the amino terminus of HUVEC-bound SDF-1α, which is required for its chemotactic activity. The reduction in T lymphocyte transendothelial migration was not observed using a different chemokine, ELC (CCL19), and was not reversed by replenishment of SDF-1α, indicating endothelial retention of the inactivated chemokine. In summary, transmigrating neutrophils secrete localized elastase that is protected from plasma inhibitors, and thereby modulate trafficking of other leukocyte subsets by altering the endothelial-associated chemotactic activities.
PMCID: PMC2211969  PMID: 15381727
endothelium; chemokine; inflammation; lymphocyte; imaging; diapedesis
20.  HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver 
Journal of Clinical Investigation  2003;112(2):160-169.
Hematopoietic stem cells rarely contribute to hepatic regeneration, however, the mechanisms governing their homing to the liver, which is a crucial first step, are poorly understood. The chemokine stromal cell–derived factor-1 (SDF-1), which attracts human and murine progenitors, is expressed by liver bile duct epithelium. Neutralization of the SDF-1 receptor CXCR4 abolished homing and engraftment of the murine liver by human CD34+ hematopoietic progenitors, while local injection of human SDF-1 increased their homing. Engrafted human cells were localized in clusters surrounding the bile ducts, in close proximity to SDF-1–expressing epithelial cells, and differentiated into albumin-producing cells. Irradiation or inflammation increased SDF-1 levels and hepatic injury induced MMP-9 activity, leading to both increased CXCR4 expression and SDF-1–mediated recruitment of hematopoietic progenitors to the liver. Unexpectedly, HGF, which is increased following liver injury, promoted protrusion formation, CXCR4 upregulation, and SDF-1–mediated directional migration by human CD34+ progenitors, and synergized with stem cell factor. Thus, stress-induced signals, such as increased expression of SDF-1, MMP-9, and HGF, recruit human CD34+ progenitors with hematopoietic and/or hepatic-like potential to the liver of NOD/SCID mice. Our results suggest the potential of hematopoietic CD34+/CXCR4+cells to respond to stress signals from nonhematopoietic injured organs as an important mechanism for tissue targeting and repair.
PMCID: PMC164291  PMID: 12865405
21.  G Protein-Dependent CCR5 Signaling Is Not Required for Efficient Infection of Primary T Lymphocytes and Macrophages by R5 Human Immunodeficiency Virus Type 1 Isolates 
Journal of Virology  2003;77(4):2550-2558.
The requirement of human immunodeficiency virus (HIV)-induced CCR5 activation for infection by R5 HIV type 1 (HIV-1) strains remains controversial. Ectopic CCR5 expression in CD4+-transformed cells or pharmacological inhibition of Gαi proteins coupled to CCR5 left unsolved whether CCR5-dependent cell activation is necessary for the HIV life cycle. In this study, we investigated the role played by HIV-induced CCR5-dependent cell signaling during infection of primary CD4-expressing leukocytes. Using lentiviral vectors, we restored CCR5 expression in T lymphocytes and macrophages from individuals carrying the homozygous 32-bp deletion of the CCR5 gene (ccr5 Δ32/Δ32). Expression of wild-type (wt) CCR5 in ccr5 Δ32/Δ32 cells permitted infection by R5 HIV isolates. We assessed the capacity of a CCR5 derivative carrying a mutated DRY motif (CCR5-R126N) in the second intracellular loop to work as an HIV-1 coreceptor. The R126N mutation is known to disable G protein coupling and agonist-induced signal transduction through CCR5 and other G protein-coupled receptors. Despite its inability to promote either intracellular calcium mobilization or cell chemotaxis, the inactive CCR5-R126N mutant provided full coreceptor function to several R5 HIV-1 isolates in primary cells as efficiently as wt CCR5. We conclude that in a primary, CCR5-reconstituted CD4+ cell environment, G protein signaling is dispensable for R5 HIV-1 isolates to actively infect primary CD4+ T lymphocytes or macrophages.
PMCID: PMC141084  PMID: 12551993
22.  Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function 
Journal of Clinical Investigation  2000;106(11):1331-1339.
The chemokine stromal-derived factor-1 (SDF-1) controls many aspects of stem cell function. Details of its regulation and sites of production are currently unknown. We report that in the bone marrow, SDF-1 is produced mainly by immature osteoblasts and endothelial cells. Conditioning with DNA-damaging agents (ionizing irradiation, cyclophosphamide, and 5-fluorouracil) caused an increase in SDF-1 expression and in CXCR4-dependent homing and repopulation by human stem cells transplanted into NOD/SCID mice. Our findings suggest that immature osteoblasts and endothelial cells control stem cell homing, retention, and repopulation by secreting SDF-1, which also participates in host defense responses to DNA damage.
PMCID: PMC381461  PMID: 11104786
23.  Opposite Effects of SDF-1 on Human Immunodeficiency Virus Type 1 Replication 
Journal of Virology  1999;73(5):3608-3615.
The α-chemokine SDF-1 binds CXCR4, a coreceptor for human immunodeficiency virus type 1 (HIV-1), and inhibits viral entry mediated by this receptor. Since chemokines are potent chemoattractants and activators of leukocytes, we examined whether the stimulation of HIV target cells by SDF-1 affects the replication of virus with different tropisms. We observed that SDF-1 inhibited the entry of X4 strains and increased the infectivity of particles bearing either a CCR5-tropic HIV-1 envelope or a vesicular stomatitis virus G envelope. In contrast to the inhibitory effect of SDF-1 on X4 strains, which is at the level of entry, the stimulatory effect does not involve envelope-receptor interactions or proviral DNA synthesis. Rather, we observed an increased ability of Tat to transactivate the HIV-1 long terminal repeat in the presence of the chemokine. Therefore, the effects of SDF-1 on the HIV-1 life cycle can be multiple and opposite, including both an inhibition of viral entry and a stimulation of proviral gene expression.
PMCID: PMC104135  PMID: 10196252
24.  Chemokine Sequestration by Viral Chemoreceptors as a Novel Viral Escape Strategy: Withdrawal of Chemokines from the Environment of Cytomegalovirus-infected Cells  
Human cytomegalovirus (HCMV), a betaherpesvirus, has developed several ways to evade the immune system, notably downregulation of cell surface expression of major histocompatibility complex class I heavy chains. Here we report that HCMV has devised another means to compromise immune surveillance mechanisms. Extracellular accumulation of both constitutively produced monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor–superinduced RANTES (regulated on activation, normal T cell expressed and secreted) was downregulated in HCMV-infected fibroblasts in the absence of transcriptional repression or the expression of polyadenylated RNA for the cellular chemokine receptors CCR-1, CCR-3, and CCR-5. Competitive binding experiments demonstrated that HCMV-infected cells bind RANTES, MCP-1, macrophage inflammatory protein (MIP)-1β, and MCP-3, but not MCP-2, to the same receptor as does MIP-1α, which is not expressed in uninfected cells. HCMV encodes three proteins with homology to CC chemokine receptors: US27, US28, and UL33. Cells infected with HCMV mutants deleted of US28, or both US27 and US28 genes, failed to downregulate extracellular accumulation of either RANTES or MCP-1. In contrast, cells infected with a mutant deleted of US27 continues to bind and downregulate those chemokines. Depletion of chemokines from the culture medium was at least partially due to continuous internalization of extracellular chemokine, since exogenously added, biotinylated RANTES accumulated in HCMV-infected cells. Thus, HCMV can modify the chemokine environment of infected cells through intense sequestering of CC chemokines, mediated principally by expression of the US28-encoded chemokine receptor.
PMCID: PMC2213390  PMID: 9730887
RANTES; human cytomegalovirus; chemokine receptors; sequestration; monocyte chemoattractant protein 1
25.  Antiviral Activity of the Proteasome on Incoming Human Immunodeficiency Virus Type 1 
Journal of Virology  1998;72(5):3845-3850.
Following cell surface receptor binding and membrane fusion, human immunodeficiency virus (HIV) virion cores are released in the cytoplasm. Incoming viral proteins represent potential targets for cytosolic proteases. We show that treatment of target cells with the proteasome inhibitors MG132 and lactacystin increased the efficiency of HIV infection. Proteasome inhibitors were active at the early steps of the viral cycle. Incoming p24Gag proteins accumulated in the cytosol, and larger amounts of proviral DNA were synthesized. In vitro, purified 20S proteasome degraded HIV virion components. Thus, degradation of incoming viral proteins by the proteasome represents an early intracellular defense against infection.
PMCID: PMC109608  PMID: 9557668

Results 1-25 (26)