PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (58)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Advances in lupus genetics and epigenetics 
Current opinion in rheumatology  2014;26(5):482-492.
Purpose of review
Genome-wide association studies (GWAS) have identified more than 50 robust loci associated with SLE susceptibility, and follow-up studies help reveal candidate causative genetic variants and their biological relevance contributing to the development of SLE. Epigenetic modulation is emerging as an important mechanism for understanding how the implicated genes interact with environmental factors. We review recent progress towards identifying causative variants of SLE-associated loci and epigenetic impact to lupus, especially genetic-epigenetic interactions that modulate expression levels of SLE susceptibility genes.
Recent findings
A few SLE-risk loci have been refined to localize likely causative variants responsible for the observed GWAS signals. Few of such variants disrupt coding sequences resulting in gain or loss of function for the encoded protein, while most fall in noncoding regions with potential to regulate gene expression through alterations in transcriptional activity, splicing, mRNA stability and epigenetic modifications. Multiple key pathways related to the SLE pathogenesis have been indicated by the identified genetic risk factors, including type I interferon signaling pathway that can also be regulated by epigenetic changes occurred in SLE.
Summary
These findings provide novel insights of the disease pathogenesis, and promise better diagnostic accuracy and new therapeutic targets for patient management.
doi:10.1097/BOR.0000000000000086
PMCID: PMC4222581  PMID: 25010439
genetics; epigenetics; causative variant; molecular pathways; systemic lupus erythematous
2.  Genetic Association of CD247 (CD3ζ) with SLE in a Large-Scale Multiethnic Study 
Genes and immunity  2015;16(2):142-150.
A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE patients and 8 077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99×10−4
doi:10.1038/gene.2014.73
PMCID: PMC4371129  PMID: 25569266
Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disorder. Considerable progress has been made to delineate the genetic control of this complex disorder. In this review, selected aspects of human and mouse genetics related to SLE are reviewed with emphasis on genes that contribute to both innate and adaptive immunity and to genes that contribute directly to susceptibility to end organ damage. It is concluded that the interactions among these two major pathways will provide further insight into the pathogenesis of SLE. An interactive model of the two major pathways is proposed without emphasis on the importance of breaking tolerance to autoantigens.
doi:10.1016/j.coi.2014.10.004
PMCID: PMC4274270  PMID: 25458999
Arthritis and rheumatism  2011;63(9):2755-2763.
Objective
T cells from patients with SLE express increased amounts of PP2Ac which contribute to decreased production of IL-2. Because IL-2 is important in the regulation of several aspects of the immune response, it has been proposed that PP2Ac contributes to the expression of SLE. This study was designed to determine whether genetic variants of PPP2AC are linked to the expression of SLE and specific clinical manifestations and account for the increased expression of PP2Ac.
Methods
We conducted a trans-ethnic study consisting of 8,695 SLE cases and 7,308 controls from four different ancestries. Eighteen single-nucleotide polymorphisms (SNPs) across the PPP2CA were genotyped using an Illumina custom array. PPP2CA expression in SLE and control T cells was analyzed by real-time PCR.
Results
A 32-kb haplotype comprised of multiple SNPs of PPP2CA showed significant association with SLE in Hispanic Americans (HA), European Americans (EA) and Asians but not in African-Americans (AA). Conditional analyses revealed that SNP rs7704116 in intron 1 showed consistently strong association with SLE across Asian, EA and HA populations (pmeta=3.8×10−7, OR=1.3[1.14–1.31]). In EA, the largest ethnic dataset, the risk A allele of rs7704116 was associated with the presence of renal disease, anti-dsDNA and anti-RNP antibodies. PPP2CA expression was approximately 2-fold higher in SLE patients carrying the rs7704116 AG genotype than those carrying GG genotype (p = 0.008).
Conclusion
Our data provide the first evidence for an association between PPP2CA polymorphisms and elevated PP2Ac transcript levels in T cells, which implicates a new molecular pathway for SLE susceptibility in EA, HA and Asians.
doi:10.1002/art.30452
PMCID: PMC3163110  PMID: 21590681
Kottyan, Leah C. | Zoller, Erin E. | Bene, Jessica | Lu, Xiaoming | Kelly, Jennifer A. | Rupert, Andrew M. | Lessard, Christopher J. | Vaughn, Samuel E. | Marion, Miranda | Weirauch, Matthew T. | Namjou, Bahram | Adler, Adam | Rasmussen, Astrid | Glenn, Stuart | Montgomery, Courtney G. | Hirschfield, Gideon M. | Xie, Gang | Coltescu, Catalina | Amos, Chris | Li, He | Ice, John A. | Nath, Swapan K. | Mariette, Xavier | Bowman, Simon | Rischmueller, Maureen | Lester, Sue | Brun, Johan G. | Gøransson, Lasse G. | Harboe, Erna | Omdal, Roald | Cunninghame-Graham, Deborah S. | Vyse, Tim | Miceli-Richard, Corinne | Brennan, Michael T. | Lessard, James A. | Wahren-Herlenius, Marie | Kvarnström, Marika | Illei, Gabor G. | Witte, Torsten | Jonsson, Roland | Eriksson, Per | Nordmark, Gunnel | Ng, Wan-Fai | Anaya, Juan-Manuel | Rhodus, Nelson L. | Segal, Barbara M. | Merrill, Joan T. | James, Judith A. | Guthridge, Joel M. | Hal Scofield, R. | Alarcon-Riquelme, Marta | Bae, Sang-Cheol | Boackle, Susan A. | Criswell, Lindsey A. | Gilkeson, Gary | Kamen, Diane L. | Jacob, Chaim O. | Kimberly, Robert | Brown, Elizabeth | Edberg, Jeffrey | Alarcón, Graciela S. | Reveille, John D. | Vilá, Luis M. | Petri, Michelle | Ramsey-Goldman, Rosalind | Freedman, Barry I. | Niewold, Timothy | Stevens, Anne M. | Tsao, Betty P. | Ying, Jun | Mayes, Maureen D. | Gorlova, Olga Y. | Wakeland, Ward | Radstake, Timothy | Martin, Ezequiel | Martin, Javier | Siminovitch, Katherine | Moser Sivils, Kathy L. | Gaffney, Patrick M. | Langefeld, Carl D. | Harley, John B. | Kaufman, Kenneth M.
Human Molecular Genetics  2014;24(2):582-596.
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5–TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5–TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10−49; OR = 1.38–1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10−27–10−32, OR = 1.7–1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5–TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5–TNPO3.
doi:10.1093/hmg/ddu455
PMCID: PMC4275071  PMID: 25205108
Arthritis and Rheumatism  2011;63(3):749-754.
Objective
Previous genome wide association study conducted in a population of European ancestry identified rs4963128, a KIAA1542 SNP 23kb telomeric to IRF7, in strong association with SLE. This study was undertaken to investigate whether genetic polymorphism within IRF7 is a risk factor for the development of SLE.
Methods
We genotyped one KIAA1542 SNP rs4963128 and one IRF7 SNP rs1131665 (Q412R) in an Asian population (cases vs. controls: 1302 vs.1479) to assess their association with SLE using custom-designed Beadstation Infinium II platform (Illumina). Subsequently, rs1131665 was further genotyped in independent panels of Chinese (528 vs.527), European American (EA) (446 vs.461) and African American (AA) (159 vs.115) by Taqman genotyping assay to seek confirmation of association in various ethnic groups. Luciferase reporter assay was used to assess the effect of Q412R polymorphism on the activation of IRF7.
Results
Consistent association of rs1131665 (Q412R) with SLE was identified in Asian, EA and AA populations (case vs. control: 2435 vs. 2582; Pmeta = 6.18×10−6, OR = 1.42[1.22–1.65]). Expression of IRF7 412Q risk allele resulted in a 2-fold increase in ISRE transcriptional activity compared with expression of IRF7 412R (P = 0.0003), suggesting IRF7 412Q confers elevated IRF7 activity and may therefore affect downstream IFN pathway.
Conclusion
We showed that the major allele of a nonsynonymous SNP rs1131665 (412Q) in IRF7 confers elevated IRF7 activation and predisposes to the development of SLE in multiple ethnic groups. This result provides direct genetic evidence supporting IRF7 may be a risk gene for human SLE.
doi:10.1002/art.30193
PMCID: PMC3063317  PMID: 21360504
Cellular and Molecular Immunology  2015;13(1):119-131.
Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window.
doi:10.1038/cmi.2014.138
PMCID: PMC4711682  PMID: 25640655
B cells; core promoter; CR2/CD21; molecular biology; transcription factor
Arthritis and rheumatism  2010;62(10):2864-2875.
Objective
We previously reported association of co-occurrence of HLA-DRB1 shared epitope (SE) and RANKL SNPs with younger age of RA onset in 182 rheumatoid factor positive (RF) European American (EA) early RA patients. Here, we fine-mapped the 48 kb RANKL region in the extended 210 EA RF-positive early RA cohort, sought replication of RA-associated SNPs in additional 501 EA and 298 African-Americans (AA) RA cohorts, and explored functional consequences of RA-associated SNPs.
Methods
SNP genotyping was conducted using pyrosequencing or TaqMan PCR assays. Associations of rs7984870 with RANKL expression in plasma, PBMC and isolated T cells were quantified using ELISA and RT-PCR. Site-directed mutagenesis of rs7984870 within the 2kb RANKL promoter was performed to drive the luciferase reporter gene in osteoblast and stromal cell lines. Interaction of DNA and protein was determined by electrophoretic mobility shift assay.
Results
A single promoter SNP rs7984870 was consistently significantly associated with earlier age of RA onset in 3 independent seropositive (RF or anti-cyclic citrullinated peptide antibody positive) RA cohorts but not in seronegative RA patients. The risk C allele of rs7984870 conferred 2-fold higher plasma RANKL levels in RF-positive RA patients, significantly elevated RANKL mRNA expression in activated normal T cells, and increased promoter activity after stimulation in vitro via differential binding to transcription factor SOX5.
Conclusion
The RANKL promoter allele that increased transcriptional levels upon stimulation might promote interaction between activated T cells and dendritic cells, predisposing to younger RA onset in seropositive EA and/or AA individuals.
doi:10.1002/art.27589
PMCID: PMC2944013  PMID: 20533289
Arthritis and rheumatism  2003;48(3):737-745.
Objective
To test the feasibility of applying a mimetic (specific for a patient-derived prothrombotic anticardiolipin antibody [aCL]) to study the homologous, disease-associated aCL in patients with antiphospholipid syndrome (APS).
Methods
We used the CL15 monoclonal aCL to screen 17 phage-display peptide libraries. Peptides (corresponding to recurrent peptide sequences) and their derivatives were synthesized and analyzed for binding to CL15 and for their abilities to inhibit CL15 from binding to cardiolipin. A peptide was chosen and used to study CL15-like IgG aCL in plasma samples from patients with APS, patients with systemic lupus erythematosus (SLE) but without APS, and normal healthy donors.
Results
Library screening with CL15 yielded 4 recurrent peptide sequences. Analyses of peptides showed that peptide CL154C reacted with antibody CL15 and inhibited binding of CL15 to cardiolipin, indicating that peptide CL154C may be a peptide mimetic for the CL15 aCL. Initial studies with plasma samples revealed that CL154C-reactive IgG was present (positivity defined as the mean + 3 SD optical density of the 25 normal controls) in 15 of 21 APS patients and 1 of 12 SLE patients.
Conclusion
These findings suggest that it is feasible to develop a specific enzyme-linked immunosorbent assay for each immunologically and functionally distinct disease-associated aCL. Additional testing of CL154C with a larger number of APS patients and SLE patients, as well as identification of peptide mimetics for each distinct aCL, will reveal the diagnostic potential of CL154C and other mimetics in identifying patients with aCL who are at risk of developing life-threatening thrombosis.
doi:10.1002/art.10836
PMCID: PMC2206208  PMID: 12632428
Genes and immunity  2014;16(1):15-23.
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. 40–50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs. low IFN-α in over 1550 SLE cases, including GWAS and replication cohorts. In meta-analysis, the top associations in European ancestry were PRKG1 rs7897633 (PMeta=2.75 × 10−8) and PNP rs1049564 (PMeta=1.24 × 10−7). We also found evidence for cross-ancestral background associations with the ANKRD44 and PLEKHF2 loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic subphenotypes becomes an attractive strategy for genetic discovery in complex disease.
doi:10.1038/gene.2014.57
PMCID: PMC4305028  PMID: 25338677
Journal of Clinical Investigation  1999;103(8):1135-1140.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by various autoantibodies that recognize autoantigens displayed on the surface of cells undergoing apoptosis. The genetic contribution to SLE susceptibility has been widely recognized. We previously reported evidence for linkage to SLE of the human chromosome 1q41–q42 region and have now narrowed it from 15 to 5 cM in an extended sample using multipoint linkage analysis. Candidate genes within this region include (a) PARP, poly(ADP-ribose) polymerase, encoding a zinc-finger DNA-binding protein that is involved in DNA repair and apoptosis; (b) TGFB2, encoding a transforming growth factor that regulates cellular interactions and responses; and (c) HLX1, encoding a homeobox protein that may regulate T-cell development. Using a multiallelic, transmission-disequilibrium test (TDT), we found overall skewing of transmission of PARP alleles to affected offspring in 124 families (P = 0.00008), preferential transmission of a PARP allele to affected offspring (P = 0.0003), and lack of transmission to unaffected offspring (P = 0.004). Similar TDT analyses of TGFB2 and HLX1 polymorphisms yielded no evidence for association with SLE. These results suggest that PARP may be (or is close to) the susceptibility gene within the chromosome 1q41–q42 region linked to SLE.
PMCID: PMC408279  PMID: 10207165
Genes and immunity  2014;15(6):347-354.
In a Genome Wide Association Study (GWAS) of individuals of European ancestry afflicted with Systemic Lupus Erythematosus (SLE) the extensive utilization of imputation, stepwise multiple regression, lasso regularization, and increasing study power by utilizing False Discovery Rate (FDR) instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of 4 genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF, and MED1), two components of the NFκB pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6), and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease.
doi:10.1038/gene.2014.23
PMCID: PMC4156543  PMID: 24871463
Frontiers in Genetics  2015;5:450.
Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3′ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10−10, OR 0.81 (0.75–0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.
doi:10.3389/fgene.2014.00450
PMCID: PMC4288052  PMID: 25620976
lupus; PXK; fine-mapping; B cells; BCR
Objective
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE) that exhibits familial aggregation and may progress to end-stage renal disease (ESRD). LN is more prevalent among African Americans than among European Americans. This study was undertaken to investigate the hypothesis that the apolipoprotein L1 gene (APOL1) nephropathy risk alleles G1/G2, common in African Americans and rare in European Americans, contribute to the ethnic disparity in risk.
Methods
APOL1 G1 and G2 nephropathy alleles were genotyped in 855 African American SLE patients with LN-ESRD (cases) and 534 African American SLE patients without nephropathy (controls) and tested for association under a recessive genetic model, by logistic regression.
Results
Ninety percent of the SLE patients were female. The mean ± SD age at SLE diagnosis was significantly lower in LN-ESRD cases than in SLE non-nephropathy controls (27.3 ± 10.9 years versus 39.5 ± 12.2 years). The mean ± SD time from SLE diagnosis to development of LN-ESRD in cases was 7.3 ± 7.2 years. The G1/G2 risk alleles were strongly associated with SLE-ESRD, with 25% of cases and 12% of controls having 2 nephropathy alleles (odds ratio [OR] 2.57, recessive model P = 1.49 × 10−9), and after adjustment for age, sex, and ancestry admixture (OR 2.72, P = 6.23 × 10−6). The age-, sex-, and admixture-adjusted population attributable risk for ESRD among patients with G1/G2 polymorphisms was 0.26, compared to 0.003 among European American patients. The mean time from SLE diagnosis to ESRD development was ~2 years earlier among individuals with APOL1 risk genotypes (P = 0.01).
Conclusion
APOL1 G1/G2 alleles strongly impact the risk of LN-ESRD in African Americans, as well as the time to progression to ESRD. The high frequency of these alleles in African Americans with near absence in European Americans explains an important proportion of the increased risk of LN-ESRD in African Americans.
doi:10.1002/art.38220
PMCID: PMC4002759  PMID: 24504811
Arthritis and rheumatism  2013;65(1):211-215.
OBJECTIVE
The increased risk of thrombosis in systemic lupus erythematosus (SLE) may be partially explained by interrelated genetic pathways for thrombosis and SLE. In a case-control analysis, we investigated whether 33 established and novel single nucleotide polymorphisms (SNP) in 20 genes involved in hemostasis pathways that have been associated with deep venous thrombosis in the general population were risk factors for SLE development among Asians.
METHODS
Patients in the discovery cohort were enrolled in one of two North American SLE cohorts. Patients in the replication cohort were enrolled in one of four Asian or two North American cohorts. SLE cases met American College of Rheumatology classification criteria. We first genotyped 263 Asian SLE and 357 healthy Asian control individuals for 33 SNPs using Luminex multiplex technology in the discovery phase, and then used Taqman and Immunochip assays to examine 5 SNPs in up to an additional 1496 cases and 993 controls in the Replication phase. SLE patients were compared to healthy controls for association with minor alleles in allelic models. Principal components analysis was used to control for intra-Asian ancestry in an analysis of the replication cohort.
RESULTS
Two genetic variants in the gene VKORC1, rs9934438 and rs9923231, were highly significant in both the discovery and replication cohorts: OR(disc) = 2.45 (p=2×10−9), OR(rep) = 1.53 (p=5×10−6) and OR(disc) = 2.40 (p=6×10−9), OR(rep) = 1.53 (p=5×10−6), respectively. These associations were significant in the replication cohort after adjustment for intra-Asian ancestry: rs9934438 OR(adj) = 1.34 (p=0.0029) and rs9923231 OR(adj) = 1.34 (p=0.0032).
CONCLUSION
Genetic variants in VKORC1, involved in vitamin K reduction and associated with DVT, are associated with SLE development in Asians. These results suggest intersecting genetic pathways for the development of SLE and thrombosis.
doi:10.1002/art.37751
PMCID: PMC3670944  PMID: 23124848
systemic lupus erythematosus; single nucleotide polymorphisms; genetic risk factors
Arthritis and rheumatism  2012;64(11):3695-3705.
Objective
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and altered type I interferon expression. Genetic surveys and genome-wide association studies have identified more than 30 SLE susceptibility genes. One of these genes, TNIP1, encodes the ABIN1 protein. ABIN1 functions in the immune system by restricting the NF-κB signaling. In order to better understand the genetic factors that influence association with SLE in genes that regulate the NF-κB pathway, we analyzed a dense set of genetic markers spanning TNIP1 and TAX1BP1, as well as the TNIP1 homolog, TNIP2, in case-control sets of diverse ethnic origins.
Methods
We fine-mapped TNIP1, TNIP2, and TAX1BP1 in a total of 8372 SLE cases and 7492 healthy controls from European-ancestry, African-American, Hispanic, East Asian, and African-American Gullah populations. Levels of TNIP1 mRNA and ABIN1 protein were analyzed using quantitative RT-PCR and Western blotting, respectively, in EBV-transformed human B cell lines.
Results
We found significant associations between genetic variants within TNIP1 and SLE but not in TNIP2 or TAX1BP1. After resequencing and imputation, we identified two independent risk haplotypes within TNIP1 in individuals of European-ancestry that were also present in African-American and Hispanic populations. These risk haplotypes produced lower levels of TNIP1 mRNA and ABIN1 protein suggesting they harbor hypomorphic functional variants that influence susceptibility to SLE by restricting ABIN1 expression.
Conclusion
Our results confirmed the association signals between SLE and TNIP1 variants in multiple populations and provide new insight into the mechanism by which TNIP1 variants may contribute to SLE pathogenesis.
doi:10.1002/art.34642
PMCID: PMC3485412  PMID: 22833143
Arthritis and rheumatism  2012;64(11):3687-3694.
Objective
Amerindian-Europeans, Asians and African-Americans have an excess morbidity from SLE and higher prevalence of lupus nephritis than Caucasians. The aim of this study was to analyze the relationship between genetic ancestry and socio-demographic characteristics and clinical features in a large cohort of Amerindian-European SLE patients.
Methods
A total of 2116 SLE patients of Amerindian-European origin and 4001 SLE patients of European descent with clinical data were used in the study. Genotyping of 253 continental ancestry informative markers was performed on the Illumina platform. The STRUCTURE and ADMIXTURE software were used to determine genetic ancestry of each individual. Correlation between ancestry and socio-demographic and clinical data were analyzed using logistic regression.
Results
The average Amerindian genetic ancestry of 2116 SLE patients was 40.7%. There was an increased risk of having renal involvement (P<0.0001, OR= 3.50 95%CI 2.63-4.63) and an early age of onset with the presence of Amerindian genetic ancestry (P<0.0001). Amerindian ancestry protected against photosensitivity (P<0.0001, OR= 0.58 95%CI 0.44-0.76), oral ulcers (P<0.0001, OR= 0.55 95%CI 0.42-0.72), and serositis (P<0.0001, OR= 0.56 95%CI 0.41-0.75) after adjustment by age, gender and age of onset. However, gender and age of onset had stronger effects on malar rash, discoid rash, arthritis and neurological involvement than genetic ancestry.
Conclusion
In general, genetic Amerindian ancestry correlates with lower socio-demographic status and increases the risk for developing renal involvement and SLE at an earlier age of onset.
doi:10.1002/art.34650
PMCID: PMC3485439  PMID: 22886787
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
doi:10.1371/journal.pgen.1003870
PMCID: PMC3794920  PMID: 24130510
Molecular Immunology  2012;52(3-4):165-173.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic component that determines risk. A common three single-nucleotide polymorphism (SNP) haplotype of the complement receptor 2 (CR2) gene has been associated with increased risk of SLE (Wu et al., 2007) (Douglas et al., 2009), and a less common haplotype consisting of the major allele at SNP1 and minor alleles at SNP2 and 3 confers protection (Douglas et al., 2009). SNP1 (rs3813946), which is located in the 5´ untranslated region (UTR) of the CR2 gene, altered transcriptional activity of a CR2 promoter-luciferase reporter gene construct transiently transfected into a B cell line (Wu et al., 2007) and had an independent effect in the protective haplotype (Douglas et al., 2009). In this study, we show that this SNP alters transcriptional activity in a transiently transfected non B-cell line as well as in stably transfected cell lines, supporting its relevance in vivo. Furthermore, the allele at this SNP affects chromatin accessibility of the surrounding sequence and transcription factor binding. These data confirm the effects of rs3813946 on CR2 transcription, identifying the 5´UTR to be a novel regulatory element for the CR2 gene in which variation may alter gene function and modify the development of lupus.
doi:10.1016/j.molimm.2012.04.013
PMCID: PMC3401243  PMID: 22673213
Human; B cells; Systemic Lupus Erythematosus; Gene Regulation; Transcription Factors; Complement Receptor 2
Annals of the rheumatic diseases  2012;72(0 2):ii56-ii61.
Many identified genetic risk factors for SLE contribute to the function of the immune system, which has expanded our understanding of disease pathogenesis. We outline the genetic variants in the recently identified SLE-associated loci, the immunologic pathways affected by these gene products, and the disease manifestations linked to these loci. Pathways potentially influenced by SLE risk variants include: apoptosis, DNA degradation and clearance of cellular debris; antigen-presentation; type I interferon, Toll-like receptor and NFκB activation; defective clearance of immune complexes containing nuclear antigens; B- and T-cell function and signaling; and monocyte and neutrophil function and signaling. These identified SLE susceptibility loci are predominantly common variants that have been confirmed among multiple ancestries, suggesting shared mechanisms in disease etiology. Ongoing genetic studies continue the investigation of specific functional variants, and their potential consequences upon immune dysregulation, enhancing our understanding of links between genotypes and specific disease manifestations. The next generation sequencing explores the identification of causal rare variants that may contribute robust genetic effects to developing SLE. Novel insights coming from genetic studies of SLE provide the opportunity to elucidate pathogenic mechanisms as well as contribute to the development of innovative therapeutic targets for this complex disease.
doi:10.1136/annrheumdis-2012-202351
PMCID: PMC3780983  PMID: 23253915
Systemic lupus erythematosus; Genetic; Genome wide association studies; Interferon pathway; Cell signaling
PLoS ONE  2013;8(8):e69404.
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7×10−9, OR = 1.40 (95% CI = 1.25–1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67–0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7×10−5, OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
doi:10.1371/journal.pone.0069404
PMCID: PMC3737240  PMID: 23950893
The Journal of rheumatology  2013;40(6):842-849.
Objective
Little is known about the genetic etiology of systemic lupus erythematosus (SLE) in individuals of African ancestry, despite its higher prevalence and greater disease severity. Overproduction of nitric oxide (NO) and reactive oxygen species are implicated in the pathogenesis and severity of SLE, making NO synthases and other reactive intermediate related genes biological candidates for disease susceptibility. This study analyzed variation in reactive intermediate genes for association with SLE in two populations with African ancestry.
Methods
A total of 244 SNPs from 53 regions were analyzed in non-Gullah African Americans (AA; 1432 cases and 1687 controls) and the genetically more homogeneous Gullah of the Sea Islands of South Carolina (133 cases and 112 controls) and. Single-marker, haplotype, and two-locus interaction tests were computed for these populations.
Results
The glutathione reductase gene GSR (rs2253409, P=0.0014, OR [95% CI]=1.26 [1.09–1.44]) was the most significant single-SNP association in AA. In the Gullah, the NADH dehydrogenase NDUFS4 (rs381575, P=0.0065, OR [95%CI]=2.10 [1.23–3.59]) and nitric oxide synthase gene NOS1 (rs561712, P=0.0072, OR [95%CI]=0.62 [0.44–0.88]) were most strongly associated with SLE. When both populations were analyzed together, GSR remained the most significant effect (rs2253409, P=0.00072, OR [95%CI]=1.26 [1.10–1.44]). Haplotype and two-locus interaction analyses also uncovered different loci in each population.
Conclusion
These results suggest distinct patterns of association with SLE in African-derived populations; specific loci may be more strongly associated within select population groups.
doi:10.3899/jrheum.120989
PMCID: PMC3735344  PMID: 23637325
systemic lupus erythematosus; African Americans; genetic association studies; oxygen compounds; single nucleotide polymorphism

Results 1-25 (58)