PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (68)
 

Clipboard (0)
None

Select a Filter Below

Authors
more »
Year of Publication
Document Types
1.  Pro-Inflammatory Adaptive Cytokines and Shed Tumor Necrosis Factor Receptors are Elevated Preceding Systemic Lupus Erythematosus Disease Flare 
Objective
Systemic lupus erythematosus (SLE) is a multifaceted disease characterized by immune dysregulation and unpredictable disease activity. This study evaluated changes in plasma concentrations of soluble mediators preceding clinically-defined disease flares.
Methods
Soluble mediators (n=52) were examined, including cytokines, chemokines, and soluble receptors, using validated multiplex bead-based or enzyme-linked immunosorbent assays in plasma from European American SLE patients who developed disease flare 6 or 12 weeks after baseline assessment were compared to 28 matched SLE patients without impending flare and 28 matched healthy controls (n=84). For a subset, mediators within samples preceding SLE disease flare and during a clinically stable period from the same individual were compared.
Results
Compared to clinically stable patients, patients with impending flare had significant (p≤0.01) alterations in 27 soluble mediators at baseline with significantly higher levels of pro-inflammatory mediators, including Th1, Th2, and Th17-type cytokines, several weeks before clinical flare. Baseline levels of regulatory cytokines, including IL-10 and TGF-β, were higher in non-flare SLE patients, while baseline levels of soluble TNFRI, TNFRII, Fas, FasL, and CD40L were significantly greater in pre-flare patients (p≤0.002). A normalized and weighted combined soluble mediator score was significantly higher in pre-flare SLE patients versus those with stable disease (p≤0.0002).
Conclusion
Pro-inflammatory adaptive cytokines and shed TNF receptors, are elevated prior to disease flare, while regulatory mediators are elevated during periods of stable disease. Alterations in the balance between inflammatory and regulatory mediators may help identify patients at risk of disease flare and help decipher SLE pathogenic mechanisms.
doi:10.1002/art.38573
PMCID: PMC4128244  PMID: 24578190
SLE; disease flare; cytokines
2.  A highlight from the LUPUS 2014 meeting: eight great ideas 
Lupus Science & Medicine  2015;2(1):e000087.
This review describes eight ‘great ideas’ regarding bench-to-bedside considerations in systemic lupus erythematosus (SLE) presented at the second international LUPUS meeting in Quebec, September 2014. The topics included: correcting the impaired clearance of apoptotic fragments; optimisation of clinical trial design: the PERFECT (Pre Evaluation Reducing Frighteningly Elevated Coverable Targets) study; lipidomics and metabolomics in SLE; importance of the inflammasome; identification and treatment of asymptomatic autoimmunity: prevention of SLE; combining low doses of hydroxychloroquine and quinacrine for long-term maintenance therapy of SLE; reducing emergency room visits and the critical relevance of the autoantigen.
doi:10.1136/lupus-2015-000087
PMCID: PMC4493165  PMID: 26167290
Systemic Lupus Erythematosus; Inflammation; Autoimmunity; Disease Activity; Lupus Nephritis
3.  Enhanced CD36 Scavenger Receptor Expression in THP-1 Human Monocytes in the Presence of Lupus Plasma: Linking Autoimmunity and Atherosclerosis 
Premature atherosclerotic cardiovascular disease (ASCVD) is a common and devastating complication of systemic lupus erythematosus (SLE). It is likely that immunologic derangements contribute to premature ASCVD in these patients, possibly by disrupting homeostatic mechanisms that orchestrate cholesterol balance in monocytes/macrophages in the artery wall. CD36, a macrophage scavenger receptor responsible for recognition and internalization of oxidized lipids, is a major participant in atherosclerotic foam cell formation. We hypothesized that lupus plasma would affect CD36 expression in a pro-atherogenic manner in THP-1 human monocytes and differentiated macrophages. SLE patient plasma markedly stimulated expression of CD36 message in a dose-dependent fashion in THP-1 human monocytes. A 50% volume/volume concentration of plasma derived from SLE patients increased CD36 mRNA by 71 6 8% (n = 3, P < 0.001) above 50% normal human plasma. 50% SLE patient plasma increased CD36 mRNA expression to 290 6 12% of no-plasma control (n = 3, P < 0.001), compared with only 118 6 3.7% of control in the presence of 50% normal human plasma (n = 3, not significant). 50% lupus plasma also upregulated CD36 protein expression by 482.3 6 76.2% (n = 4, P < 0.05), whereas the presence of 50% normal human plasma increased the CD36 protein level by only 239.8 6 61.9% (n = 4, P < 0.05). To our knowledge, this is the first demonstration that CD36 expression is enhanced by plasma from patients with an autoimmune disorder. Premature atherosclerosis is common in SLE patients. Upregulation of CD36 may contribute to this pathological process by increasing vulnerability to cholesterol overload. Demonstration of disrupted cholesterol homeostasis in this select group of patients provides further evidence of the involvement of the immune system in atherogenesis and may inform us of the role of CD36 in the general atherogenic process. CD36 may provide a novel therapeutic target in the treatment of ASCVD in SLE patients.
doi:10.3181/0806-BC-194
PMCID: PMC4362773  PMID: 19144874
lupus erythematosus; systemic; atherosclerosis; cholesterol; macrophage scavenger receptor; CD36
4.  Preliminary test of the LFA rapid evaluation of activity in lupus (LFA-REAL): an efficient outcome measure correlates with validated instruments 
Lupus Science & Medicine  2015;2(1):e000075.
Objective
Current disease activity measures for systemic lupus erythematosus (SLE) are difficult to score or interpret and problematic for use in clinical practice. Lupus Foundation of America (LFA)-Rapid Evaluation of Activity in Lupus (REAL) is a pilot application composed of anchored visual analogue scores (0–100 mm each) for each organ affected by lupus. This study evaluated the use of LFA-REAL in capturing SLE disease activity.
Methods
In a preliminary test of LFA-REAL, this simplified, organ-based system was compared with the most widely used outcome measures in clinical trials, the British Isles Lupus Assessment Group 2004 Index (BILAG), the SLE Disease Activity Index (SLEDAI) and the Safety of Estrogens in Lupus Erythematosus National Assessment (SELENA) SLEDAI Physician's Global Assessment (SS-PGA). The level of agreement was analysed using Spearman rank correlations.
Results
91 patients with SLE with mild to severe disease activity were evaluated, their median SLEDAI score was 4.0 (range 0–28) and BILAG score 8.0 (0–32). The median SS-PGA was 38 mm (4–92) versus the total REAL 50 mm (0–268), which expands in range by additive organ scores. Thirty-three patients had moderate to severe disease activity (≥1.5 on SS-PGA landmarks). The median SS-PGA score of this group was 66 mm (50–92) versus median REAL score of 100 mm (59–268), confirming ability to detect a wider distribution of scores at higher disease activity. Total REAL correlated with SLEDAI, BILAG and SS-PGA (correlation coefficient=0.816, 0.933 and 0.903, respectively; p<0.001 for all). Individual LFA-REAL organ scores for musculoskeletal and mucocutaneous also correlated with corresponding BILAG domain scores (correlation coefficient=0.925 and 0.934, p<0.001).
Conclusions
In this preliminary exercise, there were strong correlations between LFA-REAL and validated lupus disease activity indices. Further development may be valuable for consistent scoring in clinical trials, grading optimal assessment of change in disease activity and reliable monitoring of patients in practice.
doi:10.1136/lupus-2014-000075
PMCID: PMC4378376  PMID: 25861457
Autoimmune Diseases; Systemic Lupus Erythematosus; Autoantibodies
5.  Ribosomal and Immune Transcripts Associate with Relapse in Acquired ADAMTS13-Deficient Thrombotic Thrombocytopenic Purpura 
PLoS ONE  2015;10(2):e0117614.
Approximately 40% of patients who survive acute episodes of thrombotic thrombocytopenic purpura (TTP) associated with severe acquired ADAMTS13 deficiency experience one or more relapses. Risk factors for relapse other than severe ADAMTS13 deficiency and ADAMTS13 autoantibodies are unknown. ADAMTS13 autoantibodies, TTP episodes following infection or type I interferon treatment and reported ensuing systemic lupus erythematosus in some patients suggest immune dysregulation. This cross-sectional study asked whether autoantibodies against RNA-binding proteins or peripheral blood gene expression profiles measured during remission are associated with history of prior relapse in acquired ADAMTS13-deficient TTP. Peripheral blood from 38 well-characterized patients with autoimmune ADAMTS13-deficient TTP in remission was examined for autoantibodies and global gene expression. A subset of TTP patients (9 patients, 24%) exhibited a peripheral blood gene signature composed of elevated ribosomal transcripts that associated with prior relapse. A non-overlapping subset of TTP patients (9 patients, 24%) displayed a peripheral blood type I interferon gene signature that associated with autoantibodies to RNA-binding proteins but not with history of relapse. Patients who had relapsed bimodally expressed higher HLA transcript levels independently of ribosomal transcripts. Presence of any one potential risk factor (ribosomal gene signature, elevated HLA-DRB1, elevated HLA-DRB5) associated with relapse (OR = 38.4; p = 0.0002) more closely than any factor alone or all factors together. Levels of immune transcripts typical of natural killer (NK) and T lymphocytes positively correlated with ribosomal gene expression and number of prior episodes but not with time since the most recent episode. Flow cytometry confirmed elevated expression of cell surface markers encoded by these transcripts on T and/or NK cell subsets of patients who had relapsed. These data associate elevated ribosomal and immune transcripts with relapse history in acquired, ADAMTS13-deficient TTP.
doi:10.1371/journal.pone.0117614
PMCID: PMC4324966  PMID: 25671313
6.  Herpes Zoster Vaccination in SLE: A pilot study of Immunogenicity 
The Journal of rheumatology  2013;40(11):10.3899/jrheum.130170.
Background
Patients with systemic lupus erythematosus (SLE) are at increased risk of herpes zoster (HZ). Although a vaccine for HZ has been FDA approved, its use in immunocompromised individuals remains controversial because it is a live-attenuated virus vaccine. We performed a pilot study of the immunogenicity of Zostavax® in SLE patients.
Methods
Ten SLE patients and 10 controls ≥50 years old participated in this open label vaccination study. All were seropositive for varicella zoster virus (VZV). SLE patients were excluded for SLEDAI>4, use of mycophenolatemofetil, cyclophosphamide, biologics, or >10 mg prednisone daily. Follow-up visits occurred at 2, 6, and 12 weeks. Clinical outcomes included the development of adverse events, particularly HZ or vesicular lesions, and SLE flare. Immunogenicity was assessed with VZV-specific IFN-γ producing ELISPOT assays and with antibody concentrations.
Results
All subjects were women. SLE patients were slightly older than controls (60.5 vs. 55.3 years, p<0.05) Median baseline SLEDAI was 0 (range 0–2) for SLE patients. No episodes of HZ, vesicular rash, serious adverse events, or SLE flares occurred. Three injection site reactions occurred in each group: mild erythema or tenderness. The proportion of subjects with a >50% increase in ELISPOT results following vaccination was comparable between both groups, although absolute SLE responses were lower than controls. Antibody titers increased only among controls following vaccination (p<0.05).
Conclusions
Zostavax vaccination yielded a measurable immuneresponse in this cohort of mild SLE patients on mild-moderate immunosuppressive medications. No herpetiform lesions or lupus flares were seen in this small cohort of patients.
doi:10.3899/jrheum.130170
PMCID: PMC3867792  PMID: 24037550
Systemic lupus erythematosus; herpes zoster; vaccine; Zostavax; infection; clinical trial
7.  Dysregulation of the Microvasculature in Nonlesional Non-Sun-exposed Skin of Patients with Lupus Nephritis 
The Journal of rheumatology  2012;39(3):510-515.
Objective
Membrane endothelial protein C receptor (mEPCR) is highly expressed in peritubular capillaries of kidneys from patients with active and poorly responsive lupus nephritis (LN). We investigated the hypothesis that changes in the microvasculature are widespread with extension to the dermal vasculature.
Methods
Skin biopsies from uninvolved skin (buttocks) were performed in 27 patients with LN and 5 healthy controls. Sections were stained with specific antibodies reactive with mEPCR, adiponectin, intercellular adhesion molecule-1 (ICAM-1), and CD31; then assessed by enumeration of stained blood vessels (percentage positive blood vessels) blinded to knowledge of clinical information.
Results
There was a significant increase in the prevalence of blood vessels that stained for mEPCR and ICAM-1 in patients compared to controls [94% vs 59% (p = 0.045) and 81% vs 67% (p = 0.037), respectively]. Adiponectin staining and CD31 staining were similar between the groups (45% vs 43% and 98% vs 92%). Dermal staining for mEPCR was greater in patients with proliferative glomerulonephritis than in those with membranous disease (96% vs 60%; p = 0.029). A composite of poor prognostic renal markers and death was significantly associated with greater expression of mEPCR staining.
Conclusion
These data are consistent with the notion that in patients with LN, activation of the microvasculature extends beyond the clinically targeted organ. The insidious expression of this widespread vasculopathy may be a contributor to longterm comorbidities.
doi:10.3899/jrheum.110878
PMCID: PMC4054860  PMID: 22298906
SYSTEMIC LUPUS ERYTHEMATOSUS; SKIN BIOPSY; LUPUS NEPHRITIS VASCULOPATHY; GLOMERULAR FILTRATION RATE; PROTEINURIA
8.  Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients 
Journal of autoimmunity  2013;43:78-84.
Systemic lupus erythematosus is an autoimmune disease characterized by multi-system involvement and autoantibody production. Abnormal T cell DNA methylation and type-I interferon play an important role in the pathogenesis of lupus. We performed a genome-wide DNA methylation study in two independent sets of lupus patients and matched healthy controls to characterize the DNA methylome in naïve CD4+ T cells in lupus. DNA methylation was quantified for over 485,000 methylation sites across the genome, and differentially methylated sites between lupus patients and controls were identified and then independently replicated. Gene expression analysis was also performed from the same cells to investigate the relationship between the DNA methylation changes observed and mRNA expression levels. We identified and replicated 86 differentially methylated CG sites between patients and controls in 47 genes, with the majority being hypomethylated. We observed significant hypomethylation in interferon-regulated genes in naïve T cells from lupus patients, including IFIT1, IFIT3, MX1, STAT1, IFI44L, USP18, TRIM22 and BST2, suggesting epigenetic transcriptional accessibility in these genetic loci. Indeed, the majority of the hypomethylated genes (21 out of 35 hypomethylated genes) are regulated by type I interferon. The hypomethylation in interferon-regulated genes was not related to lupus disease activity. Gene expression analysis showed overexpression of these genes in total but not naïve CD4+ T cells from lupus patients. Our data suggest epigenetic “poising” of interferon-regulated genes in lupus naïve CD4+ T cells, argue for a novel pathogenic implication for abnormal T cell DNA methylation in lupus, and suggest a mechanism for type-I interferon hyper-responsiveness in lupus T cells.
doi:10.1016/j.jaut.2013.04.003
PMCID: PMC3790645  PMID: 23623029
Lupus; naïve CD4+ T cells; methylome; DNA methylation
9.  End-Stage Renal Disease in African Americans With Lupus Nephritis Is Associated With APOL1 
Objective
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE) that exhibits familial aggregation and may progress to end-stage renal disease (ESRD). LN is more prevalent among African Americans than among European Americans. This study was undertaken to investigate the hypothesis that the apolipoprotein L1 gene (APOL1) nephropathy risk alleles G1/G2, common in African Americans and rare in European Americans, contribute to the ethnic disparity in risk.
Methods
APOL1 G1 and G2 nephropathy alleles were genotyped in 855 African American SLE patients with LN-ESRD (cases) and 534 African American SLE patients without nephropathy (controls) and tested for association under a recessive genetic model, by logistic regression.
Results
Ninety percent of the SLE patients were female. The mean ± SD age at SLE diagnosis was significantly lower in LN-ESRD cases than in SLE non-nephropathy controls (27.3 ± 10.9 years versus 39.5 ± 12.2 years). The mean ± SD time from SLE diagnosis to development of LN-ESRD in cases was 7.3 ± 7.2 years. The G1/G2 risk alleles were strongly associated with SLE-ESRD, with 25% of cases and 12% of controls having 2 nephropathy alleles (odds ratio [OR] 2.57, recessive model P = 1.49 × 10−9), and after adjustment for age, sex, and ancestry admixture (OR 2.72, P = 6.23 × 10−6). The age-, sex-, and admixture-adjusted population attributable risk for ESRD among patients with G1/G2 polymorphisms was 0.26, compared to 0.003 among European American patients. The mean time from SLE diagnosis to ESRD development was ~2 years earlier among individuals with APOL1 risk genotypes (P = 0.01).
Conclusion
APOL1 G1/G2 alleles strongly impact the risk of LN-ESRD in African Americans, as well as the time to progression to ESRD. The high frequency of these alleles in African Americans with near absence in European Americans explains an important proportion of the increased risk of LN-ESRD in African Americans.
doi:10.1002/art.38220
PMCID: PMC4002759  PMID: 24504811
10.  Which outcome measures in SLE clinical trials best reflect medical judgment? 
Lupus Science & Medicine  2014;1(1):e000005.
Objectives
To compare two measures of systemic lupus erythematosus (SLE) response: the British Isles Lupus Assessment Group (BILAG)-based Composite Lupus Assessment (BICLA) and the Systemic Lupus Responder Index (SRI) against a clinician's assessment of improvement.
Methods
Ninety-one lupus patients were identified with two visits at which Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) and BILAG had been scored and with active disease (SLEDAI≥6) at the first visit. A physician rated the disease activity at the second visit as clinically significant improvement, no change or worsening. SRI and BICLA were scored both with and without the medication criteria often used in trials to restrict response definitions.
Results
68 patients were considered improved, 17 same and 6 worse at follow-up. SRI versus BICLA, performed without considering medication changes, captured physician-rated improvement with 85% vs 76% sensitivity and 74% vs 78% specificity. With medication limits both instruments had 37% sensitivity and 96% specificity for physician-assessed improvement. Seven patients considered improved by the clinician met the BICLA but not the SRI definition of improvement by failing to achieve a four-point improvement in SLEDAI. 13 clinician-rated responders met SRI but not BICLA by improving in less than all organs.
Conclusions
Shortfalls of SRI and BICLA may be due to BICLA only requiring partial improvement but in all organs versus SRI requiring full improvement in some manifestation(s) and not all organs. SRI and BICLA with medication restrictions are less likely to denote response when the physician disagrees and could provide stringent proof of efficacy in appropriately powered clinical trials.
doi:10.1136/lupus-2013-000005
PMCID: PMC4225744  PMID: 25396057
Systemic Lupus Erythematosus; Outcomes research; Disease Activity; Treatment; Autoimmunity
11.  Circulating levels of soluble MER in lupus reflect M2c activation of monocytes/macrophages, autoantibody specificities and disease activity 
Arthritis Research & Therapy  2013;15(6):R212.
Introduction
Systemic lupus erythematosus (SLE) is characterized by impaired efferocytosis and aberrant activation of innate immunity. We asked if shedding of MER receptor tyrosine kinase (MerTK) and AXL into soluble (s) ectodomains was related to immunological and clinical aspects of SLE.
Methods
Levels of sMER and sAXL in the plasma of 107 SLE patients and 45 matched controls were measured by ELISA. In 40 consecutive SLE patients, we examined potential correlations between either sMER or sAXL and plasma levels of sCD163, a marker of M2 activation. All three soluble receptors were measured in supernatants of monocytes/macrophages cultured in various immunological conditions. Membrane expression of MerTK, AXL and CD163 was assessed by flow cytometry.
Results
Both sMER and sAXL were associated with anti-chromatin and anti-phospholipid autoantibodies, and with hematological and renal involvement. However, sMER and sAXL did not significantly correlate with each other; sAXL correlated with growth arrest-specific 6 (Gas6), whereas sMER correlated with reduced free protein S (PROS) levels. Only sMER showed significant associations with lupus-specific anti-dsDNA, anti-Sm, anti-ribonucleoprotein (anti-RNP) and anti-Ro60 autoantibodies. Strong correlations with disease activity indices (Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), complement reduction, titer of circulating anti-dsDNA) were found for sMER, not for sAXL. Patients with active SLEDAI, nephritis, anti-dsDNA and anti-Ro60 positivity showed higher levels of sMER compared to controls. Levels of sMER, not sAXL, correlated with sCD163 levels, and these correlated with SLEDAI. Production of sMER and sCD163 occurred under “M2c” polarizing conditions, whereas sAXL was released upon type-I IFN exposure.
Conclusions
Alterations in homeostasis of anti-inflammatory and efferocytic “M2c” monocytes/macrophages may have a role in immunopathogenesis of SLE.
doi:10.1186/ar4407
PMCID: PMC3978923  PMID: 24325951
12.  Two Independent Functional Risk Haplotypes in TNIP1 are Associated with Systemic Lupus Erythematosus 
Arthritis and rheumatism  2012;64(11):3695-3705.
Objective
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and altered type I interferon expression. Genetic surveys and genome-wide association studies have identified more than 30 SLE susceptibility genes. One of these genes, TNIP1, encodes the ABIN1 protein. ABIN1 functions in the immune system by restricting the NF-κB signaling. In order to better understand the genetic factors that influence association with SLE in genes that regulate the NF-κB pathway, we analyzed a dense set of genetic markers spanning TNIP1 and TAX1BP1, as well as the TNIP1 homolog, TNIP2, in case-control sets of diverse ethnic origins.
Methods
We fine-mapped TNIP1, TNIP2, and TAX1BP1 in a total of 8372 SLE cases and 7492 healthy controls from European-ancestry, African-American, Hispanic, East Asian, and African-American Gullah populations. Levels of TNIP1 mRNA and ABIN1 protein were analyzed using quantitative RT-PCR and Western blotting, respectively, in EBV-transformed human B cell lines.
Results
We found significant associations between genetic variants within TNIP1 and SLE but not in TNIP2 or TAX1BP1. After resequencing and imputation, we identified two independent risk haplotypes within TNIP1 in individuals of European-ancestry that were also present in African-American and Hispanic populations. These risk haplotypes produced lower levels of TNIP1 mRNA and ABIN1 protein suggesting they harbor hypomorphic functional variants that influence susceptibility to SLE by restricting ABIN1 expression.
Conclusion
Our results confirmed the association signals between SLE and TNIP1 variants in multiple populations and provide new insight into the mechanism by which TNIP1 variants may contribute to SLE pathogenesis.
doi:10.1002/art.34642
PMCID: PMC3485412  PMID: 22833143
13.  Impact of Genetic Ancestry and Socio-Demographic Status on the Clinical Expression of Systemic Lupus Erythematosus in Amerindian-European Populations 
Arthritis and rheumatism  2012;64(11):3687-3694.
Objective
Amerindian-Europeans, Asians and African-Americans have an excess morbidity from SLE and higher prevalence of lupus nephritis than Caucasians. The aim of this study was to analyze the relationship between genetic ancestry and socio-demographic characteristics and clinical features in a large cohort of Amerindian-European SLE patients.
Methods
A total of 2116 SLE patients of Amerindian-European origin and 4001 SLE patients of European descent with clinical data were used in the study. Genotyping of 253 continental ancestry informative markers was performed on the Illumina platform. The STRUCTURE and ADMIXTURE software were used to determine genetic ancestry of each individual. Correlation between ancestry and socio-demographic and clinical data were analyzed using logistic regression.
Results
The average Amerindian genetic ancestry of 2116 SLE patients was 40.7%. There was an increased risk of having renal involvement (P<0.0001, OR= 3.50 95%CI 2.63-4.63) and an early age of onset with the presence of Amerindian genetic ancestry (P<0.0001). Amerindian ancestry protected against photosensitivity (P<0.0001, OR= 0.58 95%CI 0.44-0.76), oral ulcers (P<0.0001, OR= 0.55 95%CI 0.42-0.72), and serositis (P<0.0001, OR= 0.56 95%CI 0.41-0.75) after adjustment by age, gender and age of onset. However, gender and age of onset had stronger effects on malar rash, discoid rash, arthritis and neurological involvement than genetic ancestry.
Conclusion
In general, genetic Amerindian ancestry correlates with lower socio-demographic status and increases the risk for developing renal involvement and SLE at an earlier age of onset.
doi:10.1002/art.34650
PMCID: PMC3485439  PMID: 22886787
14.  Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression 
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
doi:10.1371/journal.pgen.1003870
PMCID: PMC3794920  PMID: 24130510
15.  Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease 
Rheumatology international  2009;30(5):591-598.
Atherosclerotic cardiovascular disease (ASCVD) contributes to morbidity and mortality in systemic lupus erythematosus (SLE). Immunologic derangements may disrupt cholesterol balance in vessel wall monocytes/macrophages and endothelium. We determined whether lupus plasma impacts expression of cholesterol 27-hydroxylase, an anti-atherogenic cholesterol-degrading enzyme that promotes cellular cholesterol efflux, in THP-1 human monocytes and primary human aortic endothelial cells (HAEC). THP-1 monocytes and HAEC were incubated in medium containing SLE patient plasma or apparently healthy control human plasma (CHP). SLE plasma decreased 27-hydroxylase message in THP-1 monocytes by 47 ± 8% (p < 0.008) and in HAEC by 51 ± 5.5% (n = 5, p < 0.001). THP-1 macrophages were incubated in 25% lupus plasma or CHP and cholesterol-loaded (50 µg ml−1 acetylated low density lipoprotein). Lupus plasma more than doubled macrophage foam cell transformation (74 ± 3% vs.35 § 3% for CHP, n = 3, p < 0.001). Impaired cholesterol homeostasis in SLE provides further evidence of immune involvement in atherogenesis. Strategies to inhibit or reverse arterial cholesterol accumulation may benefit SLE patients.
doi:10.1007/s00296-009-1020-6
PMCID: PMC3736583  PMID: 19547978
Lupus erythematosus; Systemic; Atherosclerosis; Cholesterol; Macrophage scavenger receptor; Foam cells
16.  PTPN22 Association in Systemic Lupus Erythematosus (SLE) with Respect to Individual Ancestry and Clinical Sub-Phenotypes 
PLoS ONE  2013;8(8):e69404.
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7×10−9, OR = 1.40 (95% CI = 1.25–1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67–0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7×10−5, OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
doi:10.1371/journal.pone.0069404
PMCID: PMC3737240  PMID: 23950893
17.  Variable association of reactive intermediate genes with systemic lupus erythematosus (SLE) in populations with different African ancestry 
The Journal of rheumatology  2013;40(6):842-849.
Objective
Little is known about the genetic etiology of systemic lupus erythematosus (SLE) in individuals of African ancestry, despite its higher prevalence and greater disease severity. Overproduction of nitric oxide (NO) and reactive oxygen species are implicated in the pathogenesis and severity of SLE, making NO synthases and other reactive intermediate related genes biological candidates for disease susceptibility. This study analyzed variation in reactive intermediate genes for association with SLE in two populations with African ancestry.
Methods
A total of 244 SNPs from 53 regions were analyzed in non-Gullah African Americans (AA; 1432 cases and 1687 controls) and the genetically more homogeneous Gullah of the Sea Islands of South Carolina (133 cases and 112 controls) and. Single-marker, haplotype, and two-locus interaction tests were computed for these populations.
Results
The glutathione reductase gene GSR (rs2253409, P=0.0014, OR [95% CI]=1.26 [1.09–1.44]) was the most significant single-SNP association in AA. In the Gullah, the NADH dehydrogenase NDUFS4 (rs381575, P=0.0065, OR [95%CI]=2.10 [1.23–3.59]) and nitric oxide synthase gene NOS1 (rs561712, P=0.0072, OR [95%CI]=0.62 [0.44–0.88]) were most strongly associated with SLE. When both populations were analyzed together, GSR remained the most significant effect (rs2253409, P=0.00072, OR [95%CI]=1.26 [1.10–1.44]). Haplotype and two-locus interaction analyses also uncovered different loci in each population.
Conclusion
These results suggest distinct patterns of association with SLE in African-derived populations; specific loci may be more strongly associated within select population groups.
doi:10.3899/jrheum.120989
PMCID: PMC3735344  PMID: 23637325
systemic lupus erythematosus; African Americans; genetic association studies; oxygen compounds; single nucleotide polymorphism
18.  Derivation and Validation of Systemic Lupus International Collaborating Clinics Classification Criteria for Systemic Lupus Erythematosus 
Arthritis and rheumatism  2012;64(8):2677-2686.
Objective
The Systemic Lupus Collaborating Clinics (SLICC) revised and validated the American College of Rheumatology (ACR) SLE classification criteria in order to improve clinical relevance, meet stringent methodology requirements and incorporate new knowledge in SLE immunology.
Methods
The classification criteria were derived from a set of 702 expert-rated patient scenarios. Recursive partitioning was used to derive an initial rule that was simplified and refined based on SLICC physician consensus. SLICC validated the classification criteria in a new validation sample of 690 SLE patients and controls.
Results
Seventeen criteria were identified. The SLICC criteria for SLE classification requires: 1) Fulfillment of at least four criteria, with at least one clinical criterion AND one immunologic criterion OR 2) Lupus nephritis as the sole clinical criterion in the presence of ANA or anti-dsDNA antibodies. In the derivation set, the SLICC classification criteria resulted in fewer misclassifications than the current ACR classification criteria (49 versus 70, p=0.0082), had greater sensitivity (94% versus 86%, p<0.0001) and equal specificity (92% versus 93%, p=0.39). In the validation set, the SLICC Classification criteria resulted in fewer misclassifications (62 versus 74, p=0.24), had greater sensitivity (97% versus 83%, p<0.0001) but less specificity (84% versus 96%, p<0.0001).
Conclusions
The new SLICC classification criteria performed well on a large set of patient scenarios rated by experts. They require that at least one clinical criterion and one immunologic criterion be present for a classification of SLE. Biopsy confirmed nephritis compatible with lupus (in the presence of SLE autoantibodies) is sufficient for classification.
doi:10.1002/art.34473
PMCID: PMC3409311  PMID: 22553077
19.  Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4 
PLoS Genetics  2013;9(7):e1003554.
We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10−34, OR = 1.43[1.26–1.60]) and rs1234317-T (P = 1.16×10−28, OR = 1.38[1.24–1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait.
Author Summary
Systemic lupus erythematosus (SLE/lupus) is a complex disease in which the body's immune cells cause inflammation in one or more systems to cause the associated morbidity. Hormones, the environment and genes are all causal contributors to SLE and over the past several years the genetic component of SLE has been firmly established. Several genes which are regulators of the immune system are associated with disease risk. We have established one of these, the tumour-necrosis family superfamily member 4 (TNFSF4) gene, as a lupus susceptibility gene in Northern Europeans. A major obstacle in pinpointing the marker(s) at TNFSF4 which best explain the risk of SLE has been the strong correlation (linkage disequilibrium, LD) between adjacent markers across the TNFSF4 region in this population. To address this, we have typed polymorphisms in several populations in addition to the European groups. The mixed ancestry of these populations gives a different LD pattern than that found in Europeans, presenting a method of pinpointing the section of the TNFSF4 region which results in SLE susceptibility. The Non-European populations have allowed identification of a polymorphism likely to regulate expression of TNFSF4 to increase susceptibility to SLE.
doi:10.1371/journal.pgen.1003554
PMCID: PMC3715547  PMID: 23874208
20.  Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci 
Nature genetics  2008;40(2):204-210.
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ~30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio 0.82–1.62)in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ≥9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.
doi:10.1038/ng.81
PMCID: PMC3712260  PMID: 18204446
21.  LUPUS ANTICOAGULANT, BUT NOT ANTICARDIOLIPIN ANTIBODY, PREDICTS ADVERSE PREGNANCY OUTCOME IN PATIENTS WITH ANTIPHOSPHOLIPID ANTIBODIES 
Arthritis and Rheumatism  2012;64(7):2311-2318.
BACKGROUND
Which serologic and clinical findings predict adverse pregnancy outcome (APO) in patients with antiphospholipid antibody (aPL) is controversial.
METHODS
PROMISSE is a multicenter, prospective observational study of risk factors for APO in patients with aPL (lupus anticoagulant [LAC], anticardiolipin antibody [aCL] and/or antibody to β2 glycoprotein I [anti-β2-GP-I]). We tested the hypothesis that a pattern of clinical and serological variables can identify women at highest risk for APO.
RESULTS
Between 2003 and 2011 we enrolled 144 pregnant patients, of whom 28 had APO. Thirty-nine percent of patients with LAC had APO, compared to 3% who did not have LAC (p < 0.0001). Only 8% of women with IgG aCL ≥40 u/mL but not LAC suffered APO, compared to 43% of those with LAC (p = 0.002). IgM aCL or IgG or IgM anti-β2-GP-I did not predict APO. In bivariate analysis, APO occurred in 52% of patients with and 13% of patients without prior thrombosis (p = 0.00005), and in 23% with SLE compared to 17% without SLE (not significant); SLE was a predictor in multivariate analysis. Prior pregnancy loss did not predict APO, nor did maternal race. Simultaneous aCL, anti-β2-GP-I, and LAC did not predict APO better than did LAC alone.
CONCLUSIONS
LAC is the primary predictor of APO after 12 weeks gestation in aPL-associated pregnancies. ACL and anti-β2-GP-I, if LAC is not also present, do not predict APO.
doi:10.1002/art.34402
PMCID: PMC3357451  PMID: 22275304
22.  Evaluation of TRAF6 in a Large Multi-Ancestral Lupus Cohort 
Arthritis and Rheumatism  2012;64(6):1960-1969.
Objective
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with significant immune system aberrations resulting from complex heritable genetics as well as environmental factors. TRAF6 is a candidate gene for SLE, which has a major role in several signaling pathways that are important for immunity and organ development.
Methods
Fifteen single-nucleotide polymorphisms (SNPs), across TRAF6 were evaluated in 7,490 SLE and 6,780 control subjects from different ancestries. Population-based case-control association analyses and meta-analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
Results
Evidence of associations in multiple SNPs was detected. The best overall p values were obtained for SNPs rs5030437 and rs4755453 (p=7.85×10−5 and p=4.73×10−5, respectively) without significant heterogeneity among populations (p=0.67 and p=0.50 in Q-statistic). In addition, rs540386 previously reported to be associated with RA was found to be in LD with these two SNPs (r2= 0.95) and demonstrated evidence of association with SLE in the same direction (meta-analysis p=9.15×10−4, OR=0.89, 95%CI=0.83–0.95). Thrombocytopenia improved the overall results in different populations (meta-analysis p=1.99×10−6, OR=0.57, 95%CI=0.45–0.72, for rs5030470). Finally evidence of family based association in 34 African-American pedigrees with the presence of thrombocytopenia were detected in one available SNP rs5030437 with Z score magnitude of 2.28 (p=0.02) under a dominant model.
Conclusion
Our data indicate the presence of association of TRAF6 with SLE in agreement with the previous report of association with RA. These data provide further support for the involvement of TRAF6 in the pathogenesis of autoimmunity.
doi:10.1002/art.34361
PMCID: PMC3380425  PMID: 22231568
TRAF6; polymorphism; systemic lupus erythematosus
24.  Sex-specific differences in the relationship between genetic susceptibility, T cell DNA demethylation and lupus flare severity 
Journal of Autoimmunity  2012;38(2-3):J216-J222.
Lupus is less common in men than women, and the reason is incompletely understood. Current evidence indicates that lupus flares when genetically predisposed individuals encounter environmental agents that trigger the disease, and that the environmental contribution is mediated at least in part by T cell DNA demethylation. We hypothesized that lupus disease activity is directly related to total genetic risk and inversely related to T cell DNA methylation levels in each patient. Since women are predisposed to lupus in part because of their second X chromosome, we also hypothesized that men would require a greater genetic risk, a greater degree of autosomal T cell DNA demethylation, or both, to achieve a lupus flare equal in severity to women. Genetic risk was determined by genotyping men and women with lupus across 32 confirmed lupus susceptibility loci. The methylation status of two T cell autosomal genes known to demethylate in proportion to disease activity, KIR2DL4 (KIR) and PRF1, was measured by bisulfite sequencing. Lupus disease activity was determined by the SLEDAI. Interactions between genetic score, T cell DNA demethylation, and the SLEDAI score were compared between the men and women by regression analysis. Combining the degree of DNA demethylation with the genetic risk score for each patient demonstrated that the (genetic risk)/(DNA methylation) ratio increased directly with disease activity in both men and women with lupus. Importantly, men required a greater (genetic risk)/(DNA methylation) ratio to achieve a SLEDAI score equivalent to women (p=0.010 for KIR and p=0.0054 for PRF1). This difference was not explained by a difference in the genetic risk or T cell DNA demethylation alone, suggesting a genetic-epigenetic interaction. These results suggest that genetic risk and T cell DNA demethylation interact in lupus patients to influence the severity of lupus flares, and that men require a higher genetic risk and/or greater degree of T cell DNA demethylation to achieve a lupus flare equal in severity to women.
doi:10.1016/j.jaut.2011.11.008
PMCID: PMC3313010  PMID: 22305513
Genetic risk; epigenetics; DNA methylation; lupus; genetic-epigenetic interaction; sex-disparity
25.  Analysis of autosomal genes reveals gene–sex interactions and higher total genetic risk in men with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2011;71(5):694-699.
Objectives
Systemic lupus erythematosus (SLE) is a sexually dimorphic autoimmune disease which is more common in women, but affected men often experience a more severe disease. The genetic basis of sexual dimorphism in SLE is not clearly defined. A study was undertaken to examine sex-specific genetic effects among SLE susceptibility loci.
Methods
A total of 18 autosomal genetic susceptibility loci for SLE were genotyped in a large set of patients with SLE and controls of European descent, consisting of 5932 female and 1495 male samples. Sex-specific genetic association analyses were performed. The sex–gene interaction was further validated using parametric and nonparametric methods. Aggregate differences in sex-specific genetic risk were examined by calculating a cumulative genetic risk score for SLE in each individual and comparing the average genetic risk between male and female patients.
Results
A significantly higher cumulative genetic risk for SLE was observed in men than in women. (P = 4.52×10−8) A significant sex–gene interaction was seen primarily in the human leucocyte antigen (HLA) region but also in IRF5, whereby men with SLE possess a significantly higher frequency of risk alleles than women. The genetic effect observed in KIAA1542 is specific to women with SLE and does not seem to have a role in men.
Conclusions
The data indicate that men require a higher cumulative genetic load than women to develop SLE. These observations suggest that sex bias in autoimmunity could be influenced by autosomal genetic susceptibility loci.
doi:10.1136/annrheumdis-2011-200385
PMCID: PMC3324666  PMID: 22110124

Results 1-25 (68)