PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  RB-pathway disruption in breast cancer 
Cell Cycle  2010;9(20):4153-4163.
In breast cancer, inactivation of the RB tumor suppressor gene is believed to occur via multiple mechanisms to facilitate tumorigenesis. However, the prognostic and predictive value of RB status in disease-specific clinical outcomes has remained uncertain. We investigated RB pathway deregulation in the context of both ER-positive and ER-negative disease using combined microarray datasets encompassing over 900 breast cancer patient samples. Disease-specific characteristics of RB pathway deregulation were investigated in this dataset by evaluating correlation among pathway genes as well as differential expression across patient tumor populations defined by ER status. Survival analysis among these breast cancer samples demonstrates that the RB-loss signature is associated with poor disease outcome within several independent cohorts. Within the ER-negative subpopulation, the RB-loss signature is associated with improved response to chemotherapy and longer relapse-free survival. Additionally, while individual genes in the RB target signature closely reproduce its prognostic value, they also serve to predict and monitor response to therapeutic compounds, such as the cytostatic agent PD-0332991. These results indicate that the RB-loss signature expression is associated with poor outcome in breast cancer, but predicts improved response to chemotherapy based on data in ER-negative populations. While the RB-loss signature, as a whole, demonstrates prognostic and predictive utility, a small subset of markers could be sufficient to stratify patients based on RB function and inform the selection of appropriate therapeutic regimens.
doi:10.4161/cc.9.20.13454
PMCID: PMC3055199  PMID: 20948315
RB; breast cancer; microarray; proliferation; cytostatics
2.  INDUCTION OF MONOCYTE CHEMOATTRACTANT PROTEIN-1 BY NICOTINE IN PANCREATIC DUCTAL ADENOCARCINOMA CELLS: ROLE OF OSTEOPONTIN 
Surgery  2010;148(2):298-309.
Introduction
Cigarette smoke and nicotine are among the leading environmental risk factors for developing pancreatic ductal adenocarcinoma (PDA). We showed recently that nicotine induces osteopontin (OPN), a protein that plays critical roles in inflammation and tumor metastasis. We identified an OPN isoform, OPNc, that is selectively inducible by nicotine and highly expressed in PDA tissue from smokers. In this study, we explored the potential proinflammatory role of nicotine in PDA through studying its effect on the expression of monocyte chemoattractant protein- (MCP)-1 and evaluated the role of OPN in mediating these effects.
Methods
MCP-1 mRNA and protein in PDA cells treated with or without nicotine (3–300 nM) or OPN (0.15–15 nM) were analyzed by real time PCR and ELISA. Luciferase-labeled promoter studies evaluated the effects of nicotine and OPN on MCP-1 transcription. Intracellular and tissue colocalization of OPN and MCP-1 were examined by immunofluorescence and immunohistochemistry.
Results
Nicotine treatment significantly increased MCP-1 expression in PDA cells. Interestingly, blocking OPN with siRNA or OPN antibody abolished these effects. Transient transfection of the OPNc gene in PDA cells or their treatment with recombinant OPN protein significantly (P<0.05) increased MCP-1 mRNA and protein and induced its promoter activity. MCP-1 was found in 60% of invasive PDA lesions, of which 66% were smokers. MCP-1 colocalized with OPN in PDA cells and in the malignant ducts, and correlated well with higher expression levels of OPN in the tissue from patients with invasive PDA.
Conclusions
Our data suggest that cigarette smoking and nicotine may contribute to PDA inflammation through inducing MCP-1 and provide a novel insight into a unique role for OPN in mediating these effects.
doi:10.1016/j.surg.2010.05.002
PMCID: PMC2908036  PMID: 20579680
pancreatic cancer; nicotine; osteopontin; monocyte chemoattractant protein-1
3.  Signal transducer and activator of transcription-3 and breast cancer prognosis 
Signal transducer and activator of transcription-3 (Stat3) is frequently activated in breast cancer and multiple lines of evidence suggest that Stat3 promotes tumor progression. However, the prognostic value of Stat3 in human breast cancer remains controversial and associations range from favorable to unfavorable based on four outcome studies of 62, 102, 255 and 517 patients. Cellular Stat3 protein expression was measured in three studies whereas nuclear localized, tyrosine phosphorylated Stat3 (Nuc-pYStat3) was used as the readout in only one study. We therefore retrospectively analyzed the prognostic value of Nuc-pYStat3 in a larger material of 721 breast cancer specimens. Overall, patients whose tumors were positive for Nuc-pYStat3 tended to have improved survival, but the trend did not reach statistical significance (P=0.08). When specimens were stratified by tumor grade, patients with low grade but not high grade tumors that were positive for Nuc-pYStat3 had significantly prolonged overall survival in univariate analysis (P=0.014) but not in multivariate analyses. Unexpectedly, quantitative immunofluoresence detection revealed highest levels of Nuc-pYStat3 in normal breast epithelia and gradual loss of Nuc-pYStat3 during progression from DCIS, invasive ductal carcinoma, and lymph node metastases. Levels of Nuc-pYStat3 correlated positively with levels of Nuc-pYStat5, a favorable prognostic marker, in invasive ductal carcinomas. Furthermore, NucpYStat3 levels correlated strongly with protein levels of nuclear localized Stat5a (r=0.633, P<0.001) but not Stat5b. Our data does not support the notion that Nuc-pYStat3 is an independent marker of prognosis in breast cancer, although future studies may reveal prognostic utility within molecularly characterized subtypes of breast cancer.
PMCID: PMC3138712  PMID: 21776434
Stat3; breast cancer; biomarker; prognosis; survival; immunohistochemistry
4.  RB-pathway disruption in breast cancer 
Cell cycle (Georgetown, Tex.)  2010;9(20):4153-4163.
In breast cancer, inactivation of the RB tumor suppressor gene is believed to occur via multiple mechanisms to facilitate tumorigenesis. However, the prognostic and predictive value of RB status in disease-specific clinical outcomes has remained uncertain. We investigated RB pathway deregulation in the context of both ER-positive and ER-negative disease using combined microarray datasets encompassing over 900 breast cancer patient samples. Disease-specific characteristics of RB pathway deregulation were investigated in this dataset by evaluating correlation among pathway genes as well as differential expression across patient tumor populations defined by ER status. Survival analysis among these breast cancer samples demonstrates that the RB-loss signature is associated with poor disease outcome within several independent cohorts. Within the ER-negative subpopulation, the RB-loss signature is associated with improved response to chemotherapy and longer relapse-free survival. Additionally, while individual genes in the RB target signature closely reproduce its prognostic value, they also serve to predict and monitor response to therapeutic compounds, such as the cytostatic agent PD-0332991. These results indicate that the RB-loss signature expression is associated with poor outcome in breast cancer, but predicts improved response to chemotherapy based on data in ER-negative populations. While the RB-loss signature, as a whole, demonstrates prognostic and predictive utility, a small subset of markers could be sufficient to stratify patients based on RB function and inform the selection of appropriate therapeutic regimens.
PMCID: PMC3055199  PMID: 20948315
RB; breast cancer; microarray; proliferation; cytostatics
5.  Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil 
Cancer biology & therapy  2008;7(7):986-994.
Thymidylate synthase is a target of 5-fluoruracil, a pyrimidine analog used to treat gastrointestinal and other cancers. The 5-fluorouracil metabolite, fluoro-deoxyuridine monophosphate, forms a ternary complex with thymidylate synthase and 5,10-methylene tetrahydrofolate. The purpose of this study was to evaluate the time-honored connection between thymidylate synthase and 5-fluorouracil. From our literature search spanning reports from 1995 to 2007 published in journals having an impact factor greater than two, we stratified the tumors within each article, according to low versus high thymidylate synthase expression. These groups were subdivided into responders, stable disease or disease progression. The relationship between thymidylate synthase expression and 5-fluorouracil response was analyzed for the overall group, as well as for subsets. Overall, the literature supported an approximately two-fold inverse relationship between thymidylate synthase expression and response to 5-fluoruracil. We found no change in the trend for a relationship between thymidylate synthase and 5-fluorouracil when the literature was stratified by date of publication, impact factor of the journal in which the report was published, or substrate (mRNA versus protein) for measuring thymidylate synthase expression. Of note, there is no significant change in the trend when comparing 5-fluorouracil treatment alone or in combination with leucovorin. We found a decline of this trend when certain chemotherapeutics were used in combination with 5-fluorouracil. In sum, the connection between thymidylate synthase expression and patient response to 5-fluorouracil does not satisfy expectations for an effective drug-target relationship; and thus, studies of the thymidylate synthase tandem repeat status might only be clinically valuable in regards to patient toxicity. Thus, we question the reliability of thymidylate synthase expression as a clinical predictor of 5-fluorouracil response. Future research could perhaps be directed towards alternate targets and metabolites of 5-fluorouracil, in an effort to find a clinically relevant biomarker panel for response and to optimize fluoropyrimidine-based therapy.
PMCID: PMC3081718  PMID: 18443433
thymidylate synthase; 5-fluorouracil; clinical response; pharmacogenomics; chemotherapeutic resistance; pharamocogenetic window; resistance; sensitivity
6.  Signal transducer and activator of transcription-3 and breast cancer prognosis 
Signal transducer and activator of transcription-3 (Stat3) is frequently activated in breast cancer and multiple lines of evidence suggest that Stat3 promotes tumor progression. However, the prognostic value of Stat3 in human breast cancer remains controversial and associations range from favorable to unfavorable based on four outcome studies of 62, 102, 255 and 517 patients. Cellular Stat3 protein expression was measured in three studies whereas nuclear localized, tyrosine phosphorylated Stat3 (Nuc-pYStat3) was used as the readout in only one study. We therefore retrospectively analyzed the prognostic value of Nuc-pYStat3 in a larger material of 721 breast cancer specimens. Overall, patients whose tumors were positive for Nuc-pYStat3 tended to have improved survival, but the trend did not reach statistical significance (P=0.08). When specimens were stratified by tumor grade, patients with low grade but not high grade tumors that were positive for Nuc-pYStat3 had significantly prolonged overall survival in univariate analysis (P=0.014) but not in multivariate analyses. Unexpectedly, quantitative immunofluoresence detection revealed highest levels of Nuc-pYStat3 in normal breast epithelia and gradual loss of Nuc-pYStat3 during progression from DCIS, invasive ductal carcinoma, and lymph node metastases. Levels of Nuc-pYStat3 correlated positively with levels of Nuc-pYStat5, a favorable prognostic marker, in invasive ductal carcinomas. Furthermore, Nuc-pYStat3 levels correlated strongly with protein levels of nuclear localized Stat5a (r=0.633, P<0.001) but notStat5b. Our data does not support the notion that Nuc-pYStat3 is an independent marker of prognosis in breast cancer, although future studies may reveal prognostic utility within molecularly characterized subtypes of breast cancer.
PMCID: PMC3138712  PMID: 21776434
Stat3; breast cancer; biomarker; prognosis; survival; immunohistochemistry
7.  EXPRESSION OF A PRO-METASTATIC SPLICE VARIANT OF OSTEOPONTIN, OPNC, IN HUMAN PANCREATIC DUCTAL ADENOCARCINOMA 
Surgery  2009;146(2):232-240.
Introduction
Osteopontin (OPN) is a secreted phosphoprotein that confers on cancer cells a migratory phenotype. We showed recently that nicotine, a major risk factor in pancreatic ductal adenocarcinoma (PDA), increases OPN expression in PDA cells. An OPN splice variant, OPNc, supports anchorage independence and maybe the most potent OPN isoform to convey metastatic behavior. In this study, we tested the effect of nicotine on OPNc expression, and analyzed the correlation between total OPN/OPNc levels and patients’ smoking history.
Methods
Real time PCR and UV-light-illumination of ethidium-bromide staining were used to examine the mRNA expression in tissue and in PDA cells treated with or without nicotine (3-300 nM). OPN and OPNc were localized by immunohisotchemistry, and ELISA was used to analyze OPN serum levels.
Results
Nicotine treatment of PDA cells selectively induced denovo expression of OPNc. OPNc was found in 87% of invasive PDA lesions, of which 73% were smokers. The levels of OPNc correlated well with higher expression levels of total OPN in the tissue and serum from patients with invasive PDA.
Conclusions
Our data suggest that smoking and nicotine may contribute to PDA metastatic potential through promoting OPNc expression. Although the direct role of OPNc in PDA progression is not defined, OPNc may have value as a diagnostic and prognostic marker, especially in invasive PDA.
doi:10.1016/j.surg.2009.03.036
PMCID: PMC2777713  PMID: 19628079
pancreatic cancer; nicotine; osteopontin
8.  The Cell Fate Determination Factor Dachshund Inhibits Androgen Receptor Signaling and Prostate Cancer Cellular Growth 
Cancer research  2009;69(8):3347-3355.
Initially isolated as the dominant suppressor of the mutant epidermal growth factor receptor (ellipse), the Dachshund gene plays a key role in metazoan development regulating the Retinal Determination Gene Network (RDGN). Herein the DACH1 gene was expressed in normal prostate epithelial cells with reduced expression in human prostate cancer. DACH1 inhibited prostate cancer cellular DNA synthesis, growth in colony forming assays, and blocked contact-independent growth in soft agar assays. DACH1 inhibited Androgen Receptor (AR) activity, requiring a conserved DS Domain (Dachshund domain conserved with Ski/Sno) that bound NCoR/HDAC and was recruited to an androgen-responsive gene promoter. DACH1 inhibited ligand-dependent activity of AR mutations identified in patients with androgen insensitive prostate cancer. The DS domain was sufficient for repression of the AR wt but failed to repress an AR acetylation site point mutant. These studies demonstrate a role for the RDGN in regulating cellular growth and signaling in prostate cancer.
doi:10.1158/0008-5472.CAN-08-3821
PMCID: PMC2669850  PMID: 19351840
DACH1; AR; Prostate Cancer; Proliferation

Results 1-8 (8)