PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Creating a tumor-resistant microenvironment 
Cell Cycle  2013;12(3):480-490.
Here, we provide the necessary proof of concept, that it is possible to metabolically create a non-permissive or “hostile” stromal microenvironment, which actively prevents tumor engraftment in vivo. We developed a novel genetically engineered fibroblast cell line that completely prevents tumor formation in mice, with a 100% protection rate. No host side effects were apparent. This could represent a viable cellular strategy for preventing and treating a variety of human cancers. More specifically, we examined the autocrine and paracrine effects of the cellular delivery of TNFα on breast cancer tumor growth and cancer metabolism. For this purpose, we recombinantly overexpressed TNFα in human breast cancer cells (MDA-MB-231) or human immortalized fibroblasts (hTERT-BJ1). Our results directly show that TNFα functions as a potent tumor suppressor. Remarkably, TNFα-expressing breast cancer cells were viable, without any significant increases in their basal apoptotic rate. However, after 4 weeks post-implantation, TNFα-expressing breast cancer cells failed to form any tumors in xenografted mice (0 tumors/10 injections), ultimately conferring 100% protection against tumorigenesis. Similarly, TNFα-overexpressing fibroblasts were also viable, without any increases in apoptosis. Significantly, complete tumor suppression was obtained by co-injecting TNFα expressing stromal fibroblasts with human breast cancer cells, indicating that paracrine cell-mediated delivery of TNFα can also prevent tumor engraftment and growth (0 tumors/10 injections). Mechanistically, TNFα induced autophagy and mitochondrial dysfunction in both epithelial cancer cells and stromal fibroblasts, preventing energy transfer from the tumor microenvironment, likely “starving” the cancer cells to death. In addition, via qRT-PCR analysis of MDA-MB-231 cells, we observed that TNFα mediated the upregulation of gene transcripts associated with inflammation and senescence [IL-1-β, IL-6, IL-8, MCP-1, COX-2, p21(WAF1/CIP1)] and downregulated known tumor-promoting genes (collagen VI and MMP2). Recombinant overexpression of TNFα receptor(s) in MDA-MB-231 cells also significantly reduced tumor growth, but was not as effective as the TNFα ligand itself in preventing tumor growth. Thus, we propose that stromal cell-mediated delivery of TNFα to human tumors [using transfected fibroblasts or mesenchymal stem cells (hMSCs)] may be a novel and effective strategy for the prevention and treatment of human cancers.
doi:10.4161/cc.23370
PMCID: PMC3587449  PMID: 23292149
tumor necrosis factor (TNF); cancer prevention; cellular therapy; fibroblast mediated delivery; mitochondrial dysfunction; breast cancer; tumor growth; tumor cell engraftment; autophagy; apoptosis
2.  Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition 
Cell Cycle  2011;10(21):3692-3700.
Pancreatic cancer is one of the deadliest cancers due to early rapid metastasis and chemoresistance. Recently, epithelial to mesenchymal transition (EMT) was shown to play a key role in the pathogenesis of pancreatic cancer. To understand the role of caveolin-1 (Cav-1) in EMT, we overexpressed Cav-1 in a pancreatic cancer cell line, Panc 10.05, that does not normally express Cav-1. Here, we show that Cav-1 expression in pancreatic cancer cells induces an epithelial phenotype and promotes cell-cell contact, with increased expression of plasma membrane bound E-cadherin and β-catenin. Mechanistically, Cav-1 induces Snail downregulation and decreased activation of AKT, MAPK and TGFβ-Smad signaling pathways. In vitro, Cav-1 expression reduces cell migration and invasion, and attenuates doxorubicin-chemoresistance of pancreatic cancer cells. Importantly, in vivo studies revealed that Cav-1 expression greatly suppresses tumor formation in a xenograft model. Most interestingly, Panc/Cav-1 tumors displayed organized nests of differentiated cells that were totally absent in control tumors. Confirming our in vitro results, these nests of differentiated cells showed reexpression of E-cadherin and β-catenin at the cell membrane. Thus, we provide evidence that Cav-1 functions as a crucial modulator of EMT and cell differentiation in pancreatic cancer.
doi:10.4161/cc.10.21.17895
PMCID: PMC3266007  PMID: 22041584
caveolae; caveolin-1; epithelial-mesenchymal transition; E-cadherin; pancreatic cancer; cell differentiation; chemoresistance
3.  TUMOR-SPECIFIC EXPRESSION AND ALTERNATIVE SPLICING OF THE COL6A3 GENE IN PANCREATIC CANCER 
Surgery  2011;150(2):306-315.
Introduction
Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease in which a prominent desmoplastic reaction is a defining characteristic. Fibrillar collagens, such as collagen I and to a lesser extent, collagen III and V comprise the majority of this stromal fibrosis. Type VI collagen (COL6) forms a microfibrillar network associated with type I collagen fibrils. The expression of COL6 has been linked to inflammation and survival. Importantly, tumor-specific alternative splicing in COL6A3 has been identified in several cancers by genome exon arrays. We evaluated the expression and localization of COL6A3 in PDA and premalignant lesions and explored the presence of alternative splicing events.
Methods
We analyzed paired PDA-normal (n=18), IPMN (n=5), pancreatic cystadenoma (n=5), and eight PDA cell lines with RT-PCR, using unique primers that identify total COL6A3 gene and alternative splicing sites in several of its exons. Western blot analysis and immunohistochemistry were used to analyze the expression levels and localization of COL6A3 protein in the different lesions, and in two animal models of PDA.
Results
COL6A3 protein levels were significantly upregulated in 77% of the paired PDA-adjacent tissue examined. COL6A3 was mainly present in the desmoplastic stroma of PDA, with high deposition around the malignant ducts and in between the sites of stromal fatty infiltration. Analysis of the COL6A3 splice variants showed tumor-specific consistent inclusion of exons 3 and 6 in 17 of the 18 (94%) paired PDA-adjacent tissues. Inclusion of exon 4 was exclusively tumor-specific, with barely detectable expression in the adjacent tissues. IPMN and pancreatic cystadenomas showed no expression of any of the examined exons. Total COL6A3 mRNA and exon 6 were identified in six PDA cell lines, but only two cell lines (MIA PACA-2 and ASPC-1) expressed exons 3 and 4. In both the xenograft and transgenic models of PDA, COL6A3 immunoreactivity was present in the stroma and some PDA cells.
Conclusions
We describe, for the first time, a dynamic process of tumor-specific alternative splicing in several exons of stromal COL6A3. Alternatively spliced proteins may contribute to the etiology or progression of cancer and may serve as markers for cancer diagnosis. Identification of COL6A3 isoforms as PDA-specific provides the basis for future studies to explore the oncogenic and diagnostic potential of these alternative splicing events.
doi:10.1016/j.surg.2011.05.011
PMCID: PMC3163121  PMID: 21719059
pancreatic cancer; COL6A3; stroma; microenvironment
4.  Serum Monocyte Chemoattractant Protein-1 in Pancreatic Cancer 
Journal of Oncology  2011;2011:518394.
Background/Aims. Pancreatic ductal adenocarcinoma (PDA) has etiological association with chronic inflammation. Elevated circulating levels of inflammatory mediators, such as monocyte chemoattractant protein-1 (MCP-1), are found in obese individuals. We hypothesized that serum MCP-1 levels are elevated in obese PDA patients. Methods. ELISA was used to analyze MCP-1 serum levels in PDA (n = 62) and intraductal papillary mucinous neoplasms (IPMN) (n = 27). Recursive partitioning statistical analysis investigated the relationship between log MCP-1 and clinicopathological parameters. Results. Log MCP-1 values were significantly (P < 0.05) elevated in patients with BMI ≥ 37.5. In patients with BMI < 37.5, average log MCP-1 values were significantly elevated in PDA patients when compared to IPMN patients. Within the IPMN group, higher log MCP-1 levels correlated with increased age. Recursive partitioning analysis of IPMN versus PDA revealed a strategy of predicting characteristics of patients who are more likely to have cancer. This strategy utilizes log MCP-1 as the primary factor and also utilizes smoking status, gender, and age. Conclusion. MCP-1 is a promising biomarker in pancreatic cancer. The potential of using MCP-1 to distinguish PDA from IPMN patients must be studied in larger populations to validate and demonstrate its eventual clinical utility.
doi:10.1155/2011/518394
PMCID: PMC3184439  PMID: 21977031
5.  INDUCTION OF MONOCYTE CHEMOATTRACTANT PROTEIN-1 BY NICOTINE IN PANCREATIC DUCTAL ADENOCARCINOMA CELLS: ROLE OF OSTEOPONTIN 
Surgery  2010;148(2):298-309.
Introduction
Cigarette smoke and nicotine are among the leading environmental risk factors for developing pancreatic ductal adenocarcinoma (PDA). We showed recently that nicotine induces osteopontin (OPN), a protein that plays critical roles in inflammation and tumor metastasis. We identified an OPN isoform, OPNc, that is selectively inducible by nicotine and highly expressed in PDA tissue from smokers. In this study, we explored the potential proinflammatory role of nicotine in PDA through studying its effect on the expression of monocyte chemoattractant protein- (MCP)-1 and evaluated the role of OPN in mediating these effects.
Methods
MCP-1 mRNA and protein in PDA cells treated with or without nicotine (3–300 nM) or OPN (0.15–15 nM) were analyzed by real time PCR and ELISA. Luciferase-labeled promoter studies evaluated the effects of nicotine and OPN on MCP-1 transcription. Intracellular and tissue colocalization of OPN and MCP-1 were examined by immunofluorescence and immunohistochemistry.
Results
Nicotine treatment significantly increased MCP-1 expression in PDA cells. Interestingly, blocking OPN with siRNA or OPN antibody abolished these effects. Transient transfection of the OPNc gene in PDA cells or their treatment with recombinant OPN protein significantly (P<0.05) increased MCP-1 mRNA and protein and induced its promoter activity. MCP-1 was found in 60% of invasive PDA lesions, of which 66% were smokers. MCP-1 colocalized with OPN in PDA cells and in the malignant ducts, and correlated well with higher expression levels of OPN in the tissue from patients with invasive PDA.
Conclusions
Our data suggest that cigarette smoking and nicotine may contribute to PDA inflammation through inducing MCP-1 and provide a novel insight into a unique role for OPN in mediating these effects.
doi:10.1016/j.surg.2010.05.002
PMCID: PMC2908036  PMID: 20579680
pancreatic cancer; nicotine; osteopontin; monocyte chemoattractant protein-1
6.  Effects of Thymoquinone in the Expression of Mucin 4 in Pancreatic Cancer Cells: Implications for the Development of Novel Cancer Therapies 
Molecular cancer therapeutics  2010;9(5):1419-1431.
Pancreatic cancer is one of the most lethal cancers in the world, as it continues to be resistant to any therapeutic approaches. The high molecular weight glycoprotein mucin 4 (MUC4) is aberrantly expressed in pancreatic cancer and contributes to the regulation of differentiation, proliferation, metastasis, and the chemoresistance of pancreatic cancer cells. The absence of its expression in the normal pancreatic ductal cells makes MUC4 a promising target for novel cancer therapeutics. Natural products have been widely investigated as potential candidates in cancer therapies, and thymoquinone (TQ), extracted from the seeds of Nigella sativa, has shown excellent antineoplastic properties in some systems. In the present study, we evaluated the effect of TQ on pancreatic cancer cells and specifically investigated its effect on MUC4 expression. The MUC4-expressing pancreatic cancer cells FG/COLO357 and CD18/HPAF were incubated with TQ, and in vitro functional assays were done. The results obtained indicate that treatment with TQ downregulated MUC4 expression through the proteasomal pathway and induced apoptosis in pancreatic cancer cells by the activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase pathways. In agreement with previous studies, the decrease in MUC4 expression correlated with an increase in apoptosis, decreased motility, and decreased migration of pancreatic cancer cells. MUC4 transient silencing studies showed that c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase pathways are activated in pancreatic cancer cells, indicating that the activation of these pathways by TQ is directly related to the MUC4 downregulation induced by the drug. Overall, TQ has potential for the development of novel therapies against pancreatic cancer.
doi:10.1158/1535-7163.MCT-10-0075
PMCID: PMC2906253  PMID: 20423995
7.  EXPRESSION OF A PRO-METASTATIC SPLICE VARIANT OF OSTEOPONTIN, OPNC, IN HUMAN PANCREATIC DUCTAL ADENOCARCINOMA 
Surgery  2009;146(2):232-240.
Introduction
Osteopontin (OPN) is a secreted phosphoprotein that confers on cancer cells a migratory phenotype. We showed recently that nicotine, a major risk factor in pancreatic ductal adenocarcinoma (PDA), increases OPN expression in PDA cells. An OPN splice variant, OPNc, supports anchorage independence and maybe the most potent OPN isoform to convey metastatic behavior. In this study, we tested the effect of nicotine on OPNc expression, and analyzed the correlation between total OPN/OPNc levels and patients’ smoking history.
Methods
Real time PCR and UV-light-illumination of ethidium-bromide staining were used to examine the mRNA expression in tissue and in PDA cells treated with or without nicotine (3-300 nM). OPN and OPNc were localized by immunohisotchemistry, and ELISA was used to analyze OPN serum levels.
Results
Nicotine treatment of PDA cells selectively induced denovo expression of OPNc. OPNc was found in 87% of invasive PDA lesions, of which 73% were smokers. The levels of OPNc correlated well with higher expression levels of total OPN in the tissue and serum from patients with invasive PDA.
Conclusions
Our data suggest that smoking and nicotine may contribute to PDA metastatic potential through promoting OPNc expression. Although the direct role of OPNc in PDA progression is not defined, OPNc may have value as a diagnostic and prognostic marker, especially in invasive PDA.
doi:10.1016/j.surg.2009.03.036
PMCID: PMC2777713  PMID: 19628079
pancreatic cancer; nicotine; osteopontin

Results 1-7 (7)