PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  The Impact of Motor Axon Misdirection and Attrition on Behavioral Deficit Following Experimental Nerve Injuries 
PLoS ONE  2013;8(11):e82546.
Peripheral nerve transection and neuroma-in-continuity injuries are associated with permanent functional deficits, often despite successful end-organ reinnervation. Axonal misdirection with non-specific reinnervation, frustrated regeneration and axonal attrition are believed to be among the anatomical substrates that underlie the poor functional recovery associated with these devastating injuries. Yet, functional deficits associated with axonal misdirection in experimental neuroma-in-continuity injuries have not yet been studied. We hypothesized that experimental neuroma-in-continuity injuries would result in motor axon misdirection and attrition with proportional persistent functional deficits. The femoral nerve misdirection model was exploited to assess major motor pathway misdirection and axonal attrition over a spectrum of experimental nerve injuries, with neuroma-in-continuity injuries simulated by the combination of compression and traction forces in 42 male rats. Sciatic nerve injuries were employed in an additional 42 rats, to evaluate the contribution of axonal misdirection to locomotor deficits by a ladder rung task up to 12 weeks. Retrograde motor neuron labeling techniques were utilized to determine the degree of axonal misdirection and attrition. Characteristic histological neuroma-in-continuity features were demonstrated in the neuroma-in-continuity groups and poor functional recovery was seen despite successful nerve regeneration and muscle reinnervation. Good positive and negative correlations were observed respectively between axonal misdirection (p<.0001, r2=.67), motor neuron counts (attrition) (p<.0001, r2=.69) and final functional deficits. We demonstrate prominent motor axon misdirection and attrition in neuroma-in-continuity and transection injuries of mixed motor nerves that contribute to the long-term functional deficits. Although widely accepted in theory, to our knowledge, this is the first experimental evidence to convincingly demonstrate these correlations with data inclusive of the neuroma-in-continuity spectrum. This work emphasizes the need to focus on strategies that promote both robust and accurate nerve regeneration to optimize functional recovery. It also demonstrates that clinically relevant neuroma-in-continuity injuries can now also be subjected to experimental investigation.
doi:10.1371/journal.pone.0082546
PMCID: PMC3839879  PMID: 24282624
2.  Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach 
Journal of Experimental Botany  2013;64(18):5737-5752.
Integrative systems biology proposes new approaches to decipher the variation of phenotypic traits. In an effort to link the genetic variation and the physiological and molecular bases of fruit composition, the proteome (424 protein spots), metabolome (26 compounds), enzymatic profile (26 enzymes), and phenotypes of eight tomato accessions, covering the genetic diversity of the species, and four of their F1 hybrids, were characterized at two fruit developmental stages (cell expansion and orange-red). The contents of metabolites varied among the genetic backgrounds, while enzyme profiles were less variable, particularly at the cell expansion stage. Frequent genotype by stage interactions suggested that the trends observed for one accession at a physiological level may change in another accession. In agreement with this, the inheritance modes varied between crosses and stages. Although additivity was predominant, 40% of the traits were non-additively inherited. Relationships among traits revealed associations between different levels of expression and provided information on several key proteins. Notably, the role of frucktokinase, invertase, and cysteine synthase in the variation of metabolites was highlighted. Several stress-related proteins also appeared related to fruit weight differences. These key proteins might be targets for improving metabolite contents of the fruit. This systems biology approach provides better understanding of networks controlling the genetic variation of tomato fruit composition. In addition, the wide data sets generated provide an ideal framework to develop innovative integrated hypothesis and will be highly valuable for the research community.
doi:10.1093/jxb/ert349
PMCID: PMC3871826  PMID: 24151307
Fruit; metabolome; proteome; systems biology; tomato.
3.  Draft Genome Sequences of Mycoplasma auris and Mycoplasma yeatsii, Two Species of the Ear Canal of Caprinae 
Genome Announcements  2013;1(3):e00280-13.
We report here the draft genome sequences of Mycoplasma auris and Mycoplasma yeatsii, two species commonly isolated from the external ear canal of Caprinae.
doi:10.1128/genomeA.00280-13
PMCID: PMC3707572  PMID: 23766401
4.  Draft Genome Sequences of Mycoplasma alkalescens, Mycoplasma arginini, and Mycoplasma bovigenitalium, Three Species with Equivocal Pathogenic Status for Cattle 
Genome Announcements  2013;1(3):e00348-13.
We report here the draft genome sequences of Mycoplasma alkalescens, Mycoplasma arginini, and Mycoplasma bovigenitalium. These three species are regularly isolated from bovine clinical specimens, although their role in disease is unclear.
doi:10.1128/genomeA.00348-13
PMCID: PMC3707579  PMID: 23766408
5.  Complete Genome Sequence of Mycoplasma putrefaciens Strain 9231, One of the Agents of Contagious Agalactia in Goats 
Genome Announcements  2013;1(3):e00354-13.
Mycoplasma putrefaciens is one of the etiologic agents of contagious agalactia in goats. We report herein the complete genome sequence of Mycoplasma putrefaciens strain 9231.
doi:10.1128/genomeA.00354-13
PMCID: PMC3707581  PMID: 23766410
6.  Traumatic Neuroma in Continuity Injury Model in Rodents 
Journal of Neurotrauma  2012;29(8):1691-1703.
Abstract
Traumatic neuroma in continuity (NIC) results in profound neurological deficits, and its management poses the most challenging problem to peripheral nerve surgeons today. The absence of a clinically relevant experimental model continues to handicap our ability to investigate ways of better diagnosis and treatment for these disabling injuries. Various injury techniques were tested on Lewis rat sciatic nerves. Optimal experimental injuries that consistently resulted in NIC combined both intense focal compression and traction forces. Nerves were harvested at 0, 5, 13, 21, and 65 days for histological examination. Skilled locomotion and ground reaction force (GRF) analysis were performed up to 9 weeks on the experimental (n=6) and crush-control injuries (n=5). Focal widening, disruption of endoneurium and perineurium with aberrant intra- and extrafascicular axonal regeneration and progressive fibrosis was consistently demonstrated in 14 of 14 nerves with refined experimental injuries. At 8 weeks, experimental animals displayed a significantly greater slip ratio in both skilled locomotor assessments, compared to nerve crush animals (p<0.01). GRFs of the crush- injured animals showed earlier improvement compared to the experimental animals, whose overall GRF patterns failed to recover as well as the crush group. We have demonstrated histological features and poor functional recovery consistent with NIC formation in a rat model. The injury mechanism employed combines traction and compression forces akin to the physical forces at play in clinical nerve injuries. This model may serve as a tool to help diagnose this injury earlier and to develop intervention strategies to improve patient outcomes.
doi:10.1089/neu.2011.1857
PMCID: PMC3353763  PMID: 22011082
locomotion; nerve injury; nerve regeneration; neuroma; Sunderland grade 4 injury
7.  ALL-TIME RELEASES OF MERCURY TO THE ATMOSPHERE FROM HUMAN ACTIVITIES 
Environmental science & technology  2011;45(24):10485-10491.
Understanding the biogeochemical cycling of mercury is critical for explaining the presence of mercury in remote regions of the world, such as the Arctic and the Himalayas, as well as local concentrations. While we have good knowledge of present-day fluxes of mercury to the atmosphere, we have little knowledge of what emission levels were like in the past. Here we develop a trend of anthropogenic emissions of mercury to the atmosphere from 1850 to 2008—for which relatively complete data are available—and supplement that trend with an estimate of anthropogenic emissions prior to 1850. Global mercury emissions peaked in 1890 at 2,600 Mg yr−1, fell to 700–800 Mg yr−1 in the inter-war years, then rose steadily after 1950 to present-day levels of 2,000 Mg yr−1. Our estimate for total mercury emissions from human activities over all time is 350 Gg, of which 39% was emitted before 1850 and 61% after 1850. Using an eight-compartment global box-model of mercury biogeochemical cycling, we show that these emission trends successfully reproduce present-day atmospheric enrichment in mercury.
doi:10.1021/es202765m
PMCID: PMC3246392  PMID: 22070723
8.  Global Source-Receptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios 
Environmental science & technology  2011;45(24):10477-10484.
Global policies regulating anthropogenic mercury require an understanding of the relationship between emitted and deposited mercury on intercontinental scales. Here we examine source-receptor relationships for present-day conditions and for four 2050 IPCC scenarios encompassing a range of economic development and environmental regulation projections. We use the GEOS-Chem global model to track mercury from its point of emission through rapid cycling in surface ocean and land reservoirs to its accumulation in longer-lived ocean and soil pools. Deposited mercury has a local component (emitted HgII, lifetime of 3.7 days against deposition) and a global component (emitted Hg0, lifetime of 6 months against deposition). Fast recycling of deposited mercury through photoreduction of HgII and re-emission of Hg0 from surface reservoirs (ice, land, surface ocean) increases the effective lifetime of anthropogenic mercury to 9 months against loss to legacy reservoirs (soil pools and the subsurface ocean). This lifetime is still sufficiently short that source-receptor relationships have a strong hemispheric signature. Asian emissions are the largest source of anthropogenic deposition to all ocean basins, though there is also regional source influence from upwind continents. Current anthropogenic emissions account for only about one-third of mercury deposition to the global ocean with the remainder from natural and legacy sources. However, controls on anthropogenic emissions would have the added benefit of reducing the legacy mercury re-emitted to the atmosphere. Better understanding is needed of the timescales for transfer of mercury from active pools to stable geochemical reservoirs.
doi:10.1021/es202496y
PMCID: PMC3246401  PMID: 22050654
9.  Toward interoperable bioscience data 
Nature genetics  2012;44(2):121-126.
To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open ‘data commoning’ culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared ‘Investigation-Study-Assay’ framework to support that vision.
doi:10.1038/ng.1054
PMCID: PMC3428019  PMID: 22281772
10.  MetaBase—the wiki-database of biological databases 
Nucleic Acids Research  2011;40(D1):D1250-D1254.
Biology is generating more data than ever. As a result, there is an ever increasing number of publicly available databases that analyse, integrate and summarize the available data, providing an invaluable resource for the biological community. As this trend continues, there is a pressing need to organize, catalogue and rate these resources, so that the information they contain can be most effectively exploited. MetaBase (MB) (http://MetaDatabase.Org) is a community-curated database containing more than 2000 commonly used biological databases. Each entry is structured using templates and can carry various user comments and annotations. Entries can be searched, listed, browsed or queried. The database was created using the same MediaWiki technology that powers Wikipedia, allowing users to contribute on many different levels. The initial release of MB was derived from the content of the 2007 Nucleic Acids Research (NAR) Database Issue. Since then, approximately 100 databases have been manually collected from the literature, and users have added information for over 240 databases. MB is synchronized annually with the static Molecular Biology Database Collection provided by NAR. To date, there have been 19 significant contributors to the project; each one is listed as an author here to highlight the community aspect of the project.
doi:10.1093/nar/gkr1099
PMCID: PMC3245051  PMID: 22139927
11.  MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles 
BMC Plant Biology  2011;11:104.
Background
Improvements in the techniques for metabolomics analyses and growing interest in metabolomic approaches are resulting in the generation of increasing numbers of metabolomic profiles. Platforms are required for profile management, as a function of experimental design, and for metabolite identification, to facilitate the mining of the corresponding data. Various databases have been created, including organism-specific knowledgebases and analytical technique-specific spectral databases. However, there is currently no platform meeting the requirements for both profile management and metabolite identification for nuclear magnetic resonance (NMR) experiments.
Description
MeRy-B, the first platform for plant 1H-NMR metabolomic profiles, is designed (i) to provide a knowledgebase of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata, (ii) for queries and visualization of the data, (iii) to discriminate between profiles with spectrum visualization tools and statistical analysis, (iv) to facilitate compound identification. It contains lists of plant metabolites and unknown compounds, with information about experimental conditions, the factors studied and metabolite concentrations for several plant species, compiled from more than one thousand annotated NMR profiles for various organs or tissues.
Conclusion
MeRy-B manages all the data generated by NMR-based plant metabolomics experiments, from description of the biological source to identification of the metabolites and determinations of their concentrations. It is the first database allowing the display and overlay of NMR metabolomic profiles selected through queries on data or metadata. MeRy-B is available from http://www.cbib.u-bordeaux2.fr/MERYB/index.php.
doi:10.1186/1471-2229-11-104
PMCID: PMC3141636  PMID: 21668943
12.  Mycoplasma mycoides, from "mycoides Small Colony" to "capri". A microevolutionary perspective 
BMC Genomics  2011;12:114.
Background
The Mycoplasma mycoides cluster consists of five species or subspecies that are ruminant pathogens. One subspecies, Mycoplasma mycoides subspecies mycoides Small Colony (MmmSC), is the causative agent of contagious bovine pleuropneumonia. Its very close relative, Mycoplasma mycoides subsp. capri (Mmc), is a more ubiquitous pathogen in small ruminants causing mastitis, arthritis, keratitis, pneumonia and septicaemia and is also found as saprophyte in the ear canal. To understand the genetics underlying these phenotypic differences, we compared the MmmSC PG1 type strain genome, which was already available, with the genome of an Mmc field strain (95010) that was sequenced in this study. We also compared the 95010 genome with the recently published genome of another Mmc strain (GM12) to evaluate Mmc strain diversity.
Results
The MmmSC PG1 genome is 1,212 kbp and that of Mmc 95010 is ca. 58 kbp shorter. Most of the sequences present in PG1 but not 95010 are highly repeated Insertion Sequences (three types of IS) and large duplicated DNA fragments. The 95010 genome contains five types of IS, present in fewer copies than in PG1, and two copies of an integrative conjugative element. These mobile genetic elements have played a key role in genome plasticity, leading to inversions of large DNA fragments. Comparison of the two genomes suggested a marked decay of the PG1 genome that seems to be correlated with a greater number of IS. The repertoire of gene families encoding surface proteins is smaller in PG1. Several genes involved in polysaccharide metabolism and protein degradation are also absent from, or degraded in, PG1.
Conclusions
The genome of MmmSC PG1 is larger than that of Mmc 95010, its very close relative, but has less coding capacity. This is the result of large genetic rearrangements due to mobile elements that have also led to marked gene decay. This is consistent with a non-adaptative genomic complexity theory, allowing duplications or pseudogenes to be maintained in the absence of adaptive selection that would lead to purifying selection and genome streamlining over longer evolutionary times. These findings also suggest that MmmSC only recently adapted to its bovine host.
doi:10.1186/1471-2164-12-114
PMCID: PMC3053259  PMID: 21324191
13.  Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity 
BMC Genomics  2010;11:86.
Background
While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study.
Results
The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms.
Conclusion
Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events.
doi:10.1186/1471-2164-11-86
PMCID: PMC2824730  PMID: 20122262
14.  Life on Arginine for Mycoplasma hominis: Clues from Its Minimal Genome and Comparison with Other Human Urogenital Mycoplasmas 
PLoS Genetics  2009;5(10):e1000677.
Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs)). Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT) between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden–Meyerhoff–Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine) and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes), plus a set of genes required for providing energy. For M. hominis, this set would include 247+9 genes, resulting in a theoretical minimal genome of 256 genes.
Author Summary
Mycoplasma hominis, M. genitalium, and Ureaplasma parvum are human pathogenic bacteria that colonize the urogenital tract. They have minimal genomes, and thus have a minimal metabolic capacity. However, they have distinct energy-generating pathways and distinct pathogenic roles. We compared the genomes of these three human pathogen minimal species, providing further insight into the composition of hypothetical minimal gene sets needed for life. To this end, we sequenced the whole M. hominis genome and reconstructed its energy-generating pathways from gene predictions. Its unusual major energy-producing pathway through arginine hydrolysis was confirmed in both genome analyses and in vivo assays. Our findings suggest that M. hominis and U. parvum underwent genetic exchange, probably while sharing a common host. We proposed a set of genes likely to represent a minimal genome. For M. hominis, this minimal genome, not including cytadherence and virulence-related genes, can be defined comprising the 247 genes shared by the three minimal genital mollicutes, combined with a set of nine genes needed for energy production for cell metabolism. This study provides insight for the synthesis of artificial genomes.
doi:10.1371/journal.pgen.1000677
PMCID: PMC2751442  PMID: 19816563
15.  Large-scale identification of human genes implicated in epidermal barrier function 
Genome Biology  2007;8(6):R107.
Identification of genes expressed in epidermal granular keratinocytes by ORESTES, including a number that are highly specific for these cells.
Background
During epidermal differentiation, keratinocytes progressing through the suprabasal layers undergo complex and tightly regulated biochemical modifications leading to cornification and desquamation. The last living cells, the granular keratinocytes (GKs), produce almost all of the proteins and lipids required for the protective barrier function before their programmed cell death gives rise to corneocytes. We present here the first analysis of the transcriptome of human GKs, purified from healthy epidermis by an original approach.
Results
Using the ORESTES method, 22,585 expressed sequence tags (ESTs) were produced that matched 3,387 genes. Despite normalization provided by this method (mean 4.6 ORESTES per gene), some highly transcribed genes, including that encoding dermokine, were overrepresented. About 330 expressed genes displayed less than 100 ESTs in UniGene clusters and are most likely to be specific for GKs and potentially involved in barrier function. This hypothesis was tested by comparing the relative expression of 73 genes in the basal and granular layers of epidermis by quantitative RT-PCR. Among these, 33 were identified as new, highly specific markers of GKs, including those encoding a protease, protease inhibitors and proteins involved in lipid metabolism and transport. We identified filaggrin 2 (also called ifapsoriasin), a poorly characterized member of the epidermal differentiation complex, as well as three new lipase genes clustered with paralogous genes on chromosome 10q23.31. A new gene of unknown function, C1orf81, is specifically disrupted in the human genome by a frameshift mutation.
Conclusion
These data increase the present knowledge of genes responsible for the formation of the skin barrier and suggest new candidates for genodermatoses of unknown origin.
doi:10.1186/gb-2007-8-6-r107
PMCID: PMC2394760  PMID: 17562024
16.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome 
PLoS Genetics  2007;3(5):e75.
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts.
Author Summary
Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
doi:10.1371/journal.pgen.0030075
PMCID: PMC1868952  PMID: 17511520
17.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome 
PLoS Genetics  2007;3(5):e75.
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts.
Author Summary
Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
doi:10.1371/journal.pgen.0030075
PMCID: PMC1868952  PMID: 17511520
18.  Mercury as a Global Pollutant: Sources, Pathways, and Effects 
Environmental Science & Technology  2013;47(10):4967-4983.
Mercury (Hg) is a global pollutant that affects human and ecosystem health. We synthesize understanding of sources, atmosphere-land-ocean Hg dynamics and health effects, and consider the implications of Hg-control policies. Primary anthropogenic Hg emissions greatly exceed natural geogenic sources, resulting in increases in Hg reservoirs and subsequent secondary Hg emissions that facilitate its global distribution. The ultimate fate of emitted Hg is primarily recalcitrant soil pools and deep ocean waters and sediments. Transfers of Hg emissions to largely unavailable reservoirs occur over the time scale of centuries, and are primarily mediated through atmospheric exchanges of wet/dry deposition and evasion from vegetation, soil organic matter and ocean surfaces. A key link between inorganic Hg inputs and exposure of humans and wildlife is the net production of methylmercury, which occurs mainly in reducing zones in freshwater, terrestrial, and coastal environments, and the subsurface ocean. Elevated human exposure to methylmercury primarily results from consumption of estuarine and marine fish. Developing fetuses are most at risk from this neurotoxin but health effects of highly exposed populations and wildlife are also a concern. Integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy.
doi:10.1021/es305071v
PMCID: PMC3701261  PMID: 23590191

Results 1-18 (18)