PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
author:("Yang, tongji")
1.  VGluT1+ Neuronal Glutamatergic Signaling Regulates Postnatal Developmental Maturation of Cortical Protoplasmic Astroglia 
The Journal of Neuroscience  2014;34(33):10950-10962.
Functional maturation of astroglia is characterized by the development of a unique, ramified morphology and the induction of important functional proteins, such as glutamate transporter GLT1. Although pathways regulating the early fate specification of astroglia have been characterized, mechanisms regulating postnatal maturation of astroglia remain essentially unknown. Here we used a new in vivo approach to illustrate and quantitatively analyze developmental arborization of astroglial processes. Our analysis found a particularly high increase in the number of VGluT1+ neuronal glutamatergic synapses that are ensheathed by processes from individual developing astroglia from postnatal day (P) 14 to P26, when astroglia undergo dramatic postnatal maturation. Subsequent silencing of VGluT1+ synaptic activity in VGluT1 KO mice significantly reduces astroglial domain growth and the induction of GLT1 in the cortex, but has no effect on astroglia in the hypothalamus, where non-VGluT1+ synaptic signaling predominates. In particular, electron microscopy analysis showed that the loss of VGluT1+ synaptic signaling significantly decreases perisynaptic enshealthing of astroglial processes on synapses. To further determine whether synaptically released glutamate mediates VGluT1+ synaptic signaling, we pharmacologically inhibited and genetically ablated metabotropic glutamate receptors (mGluRs, especially mGluR5) in developing cortical astroglia and found that developmental arborization of astroglial processes and expression of functional proteins, such as GLT1, is significantly decreased. In summary, our genetic analysis provides new in vivo evidence that VGluT1+ glutamatergic signaling, mediated by the astroglial mGluR5 receptor, regulates the functional maturation of cortical astroglia during development. These results elucidate a new mechanism for regulating the developmental formation of functional neuron-glia synaptic units.
doi:10.1523/JNEUROSCI.1167-14.2014
PMCID: PMC4131010  PMID: 25122895
astroglial mGluR5; developmental maturation; peripheral astroglial process; VGluT1
2.  Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice 
The Journal of Clinical Investigation  2014;124(10):4351-4362.
Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1–estrogen (GLP-1–estrogen) conjugate designed to deliver estrogen to GLP1 receptor–enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1–estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies.
doi:10.1172/JCI74726
PMCID: PMC4191033  PMID: 25157819
3.  Abnormal Intracellular Calcium Signaling and SNARE-Dependent Exocytosis Contributes to SOD1G93A Astrocyte-Mediated Toxicity in Amyotrophic Lateral Sclerosis 
The Journal of Neuroscience  2014;34(6):2331-2348.
Motor neurons are progressively and predominantly degenerated in ALS, which is not only induced by multiple intrinsic pathways but also significantly influenced by the neighboring glial cells. In particular, astrocytes derived from the SOD1 mutant mouse model of ALS or from human familial or sporadic ALS patient brain tissue directly induce motor neuron death in culture; however, the mechanisms of pathological astroglial secretion remain unclear. Here we investigated abnormal calcium homeostasis and altered exocytosis in SOD1G93A astrocytes. We found that purinergic stimulation induces excess calcium release from the ER stores in SOD1G93A astrocytes, which results from the abnormal ER calcium accumulation and is independent of clearance mechanisms. Furthermore, pharmacological studies suggested that store-operated calcium entry (SOCE), a calcium refilling mechanism responsive to ER calcium depletion, is enhanced in SOD1G93A astrocytes. We found that oxidant-induced increased S-glutathionylation and calcium-independent puncta formation of the ER calcium sensor STIM1 underlies the abnormal SOCE response in SOD1G93A astrocytes. Enhanced SOCE contributes to ER calcium overload in SOD1G93A astrocytes and excess calcium release from the ER during ATP stimulation. In addition, ER calcium release induces elevated ATP release from SOD1G93A astrocytes, which can be inhibited by the overexpression of dominant-negative SNARE. Selective inhibition of exocytosis in SOD1G93A astrocytes significantly prevents astrocyte-mediated toxicity to motor neurons and delays disease onset in SOD1G93A mice. Our results characterize a novel mechanism responsible for calcium dysregulation in SOD1G93A astrocytes and provide the first in vivo evidence that astrocyte exocytosis contributes to the pathogenesis of ALS.
doi:10.1523/JNEUROSCI.2689-13.2014
PMCID: PMC3913875  PMID: 24501372
4.  Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse 
Human Molecular Genetics  2013;22(10):2041-2054.
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss-of-function of fragile X mental retardation protein (FMRP). The loss of FMRP function in neurons abolishes its suppression on mGluR1/5-dependent dendritic protein translation, enhancing mGluR1/5-dependent synaptic plasticity and other disease phenotypes in FXS. In this study, we describe a new activation function of FMRP in regulating protein expression in astroglial cells. We found that astroglial glutamate transporter subtype glutamate transporter 1 (GLT1) and glutamate uptake is significantly reduced in the cortex of fmr1−/− mice. Correspondingly, neuronal excitability is also enhanced in acute fmr1−/− (but not in fmr1+/+ control) cortical slices treated with low doses (10 μm) of the GLT1-specific inhibitor dihydrokainate (DHK). Using mismatched astrocyte and neuron co-cultures, we demonstrate that the loss of astroglial (but not neuronal) FMRP particularly reduces neuron-dependent GLT1 expression and glutamate uptake in co-cultures. Interestingly, protein (but not mRNA) expression and the (S)-3,5-dihydroxyphenylglycine-dependent Ca2+ responses of astroglial mGluR5 receptor are also selectively reduced in fmr1−/− astrocytes and brain slices, attenuating neuron-dependent GLT1 expression. Subsequent FMRP immunoprecipitation and QRT–PCR analysis showed that astroglial mGluR5 (but not GLT1) mRNA is associated with FMRP. In summary, our results provide evidence that FMRP positively regulates translational expression of mGluR5 in astroglial cells, and FMRP-dependent down-regulation of mGluR5 underlies GLT1 dysregulation in fmr1−/− astrocytes. The dysregulation of GLT1 and reduced glutamate uptake may potentially contribute to enhanced neuronal excitability observed in the mouse model of FXS.
doi:10.1093/hmg/ddt055
PMCID: PMC3633372  PMID: 23396537
5.  Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion 
Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL) model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM), which combines glutamate transport current (TC) recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.
doi:10.3389/fncel.2014.00277
PMCID: PMC4158796  PMID: 25249939
freeze lesion; GLT-1; astrocyte; GLAST; glutamate
6.  Characterization of Murine SIRT3 Transcript Variants and Corresponding Protein Products 
Journal of cellular biochemistry  2010;111(4):1051-1058.
SIRT3 is one of the seven mammalian sirtuin homologs of the yeast SIR2 gene. SIRT3 possesses NAD+-dependent protein deacetylase activity. Recent studies indicate that the murine SIRT3 gene expresses different transcript variants, resulting in three possible SIRT3 protein isoforms with various lengths at the N-terminus: M1 (aa 1–334), M2 (aa 15–334), and M3 (aa 78–334). The transcript variants 1 and 3 can only produce M3 protein, while M1 and M2 proteins are translationally initiated from different in-frame ATG sites in transcript 2. Here we report that three transcript variants of the mouse SIRT3 gene are broadly expressed in various mouse tissues. By expressing these SIRT3 isoforms in HEK293 cells through transient transfection, we confirmed recent reports that two longer murine SIRT3 proteins (M1 and M2) are targeted to mitochondria with higher efficiency than the shorter M3 isoform. Additionally, the M1 and M2 proteins are processed into a mature form. Using Edman degradation we identify Ile38 (majority) or Val42 as the N-terminal amino acid of the mature M1 isoform, and Met78 or Val79 as the N-terminal amino acid of the M3 isoform. Interestingly, we found that even upon mutation of the M2 ATG site in the M1 cDNA, a processed mature protein could still be produced. In terms of deacetylase activity, we found that although only the mature protein derived from M1 or M2 proteins were active against acetylated peptide substrates, all three forms had equal deacetylase activity towards a full-length native protein substrate, acetyl CoA synthetase 2.
doi:10.1002/jcb.22795
PMCID: PMC3558747  PMID: 20677216
SIRT3; TRANSCRIPT VARIANTS; DEACETYLASE
7.  Developmental maturation of astrocytes and pathogenesis of neurodevelopmental disorders 
Recent studies have implicated potentially significant roles for astrocytes in the pathogenesis of neurodevelopmental disorders. Astrocytes undergo a dramatic maturation process following early differentiation from which typical morphology and important functions are acquired. Despite significant progress in understanding their early differentiation, very little is known about how astrocytes become functionally mature. In addition, whether functional maturation of astrocytes is disrupted in neurodevelopmental disorders and the consequences of this disruption remains essentially unknown. In this review, we discuss our perspectives about how astrocyte developmental maturation is regulated, and how disruption of the astrocyte functional maturation process, especially alterations in their ability to regulate glutamate homeostasis, may alter synaptic physiology and contribute to the pathogenesis of neurodevelopmental disorders.
doi:10.1186/1866-1955-5-22
PMCID: PMC3765765  PMID: 23988237
Astrocyte; Developmental maturation; Neuronal to astrocyte signaling; Glutamate; Glutamate transporter; GLT1; Developmental disorder
8.  Murine Sirtirt3 Protein Isoforms Have Variable Half-lives 
Gene  2011;488(1-2):46-51.
Sirtirt3 is a NAD+-dependent protein deacetylase mainly localized in mitochondria. Recent studies indicate that the murine Sirtirt3 gene expresses different transcript variants resulting in three possible Sirt3 protein isoforms with variable lengths at the N-terminus: M1 (aa 1–334), M2 (aa 15–334), and M3 (aa 78–334). In this study, we stably expressed these variants in several cell lines. We found that Sirt3 M1 or M2 could be stably expressed with predominant mitochondrial localization. However, stable expression of Sirt3 M3 protein was consistently at very low levels. Fast proteasomal degradation contributed to the low expression of Sirt3 M3 protein, as proteasome inhibitor treatment increased Sirt3 M3 protein levels in these cells. Sirt3 M3 protein is ubiquitinated and the E3 ubiquitin ligase subunit Skp2 is involved in Sirt3 M3 protein degradation. Additionally, we found Sirt3 M3 protein could be produced from Sirt3 transcripts encoding longer M1 and M2 isoforms. To explore the mechanism underlying the instability of Sirt3 M3 protein, we found that Sirt3 M1 and M2 proteins, but not M3, specifically interacted with HSP60. This suggests that heat shock proteins might play a role in the maintenance of Sirt3 protein stability.
doi:10.1016/j.gene.2011.07.029
PMCID: PMC3185158  PMID: 21840382
sirtuin; Sirt3; mouse; mitochondria; proteasome; protein half-life; HSP60
9.  Molecular Comparison of GLT1+ and ALDH1L1+ Astrocytes In Vivo In Astroglial Reporter Mice 
Glia  2011;59(2):200-207.
Astrocyte heterogeneity remains largely unknown in the CNS due to lack of specific astroglial markers. In this study, molecular identity of in vivo astrocytes was characterized in BAC ALDH1L1 and BAC GLT1 eGFP promoter reporter transgenic mice. ALDH1L1 promoter is selectively activated in adult cortical and spinal cord astrocytes, indicated by the overlap of eGFP expression with ALDH1L1 and GFAP, but not with NeuN, APC, Olig2, IbaI, PDGFRα immunoreactivity in BAC ALDH1L1 eGFP reporter mice. Interestingly, ALDH1L1 expression levels (protein, mRNA, and promoter activity) in spinal cord were selectively decreased during postnatal maturation. In contrast, its expression was up-regulated in reactive astrocytes in both acute neural injury and chronic neurodegenerative (G93A mutant SOD1) conditions, similar to GFAP, but opposite of GLT1. ALDH1L1+ and GLT1+ cells isolated through fluorescence activated cell sorting (FACS) from BAC ALDH1L1 and BAC GLT1 eGFP mice share a highly similar gene expression profile, suggesting ALDH1L1 and GLT1 are co-expressed in the same population of astrocytes. This observation was further supported by overlap of the eGFP driven by the ALDH1L1 genomic promoter and the tdTomato driven by a 8.3kb EAAT2 promoter fragment in astrocytes of BAC ALDH1L1 eGFP X EAAT2-tdTomato mice. These studies support ALDH1L1 as a general CNS astroglial marker and investigated astrocyte heterogeneity in the CNS by comparing the molecular identity of the ALDH1L1+ and GLT1+ astrocytes from astroglial reporter mice. These astroglial reporter mice provide useful in vivo tools for the molecular analysis of astrocytes in physiological and pathological conditions.
doi:10.1002/glia.21089
PMCID: PMC3199134  PMID: 21046559
astroglia; BAC; ALDH1L1; GLT1; GFAP; oligodendroglia; ALS
10.  Nuclear Factor-κB Contributes to Neuron-Dependent Induction of GLT-1 Expression in Astrocytes 
The GLT-1 (EAAT2) subtype of glutamate transporter ensures crisp excitatory signaling and limits excitotoxicity in the CNS. Astrocytic expression of GLT-1 is regulated during development, by neuronal activity, and in neurodegenerative diseases. Although neurons activate astrocytic expression of GLT-1, the mechanisms involved have not been identified. In the present study, astrocytes from transgenic mice that express enhanced green fluorescent protein (eGFP) under the control of a bacterial artificial chromosome (BAC) containing a very large region of DNA surrounding the GLT-1 gene (BAC GLT-1 eGFP mice) were used to assess the role of nuclear factor-κB (NF-κB) in neuron-dependent activation of the GLT-1 promoter. We provide evidence that neurons activate NF-κB signaling in astrocytes. Transduction of astrocytes from the BAC GLT-1 eGFP mice with dominant-negative inhibitors of NF-κB signaling completely blocked neuron-dependent activation of a NF-κB reporter construct and attenuated induction of eGFP. Exogenous expression of p65 and/or p50 NF-κB subunits induced expression of eGFP or GLT-1 and increased GLT-1-mediated transport activity. Using wild type and mutant GLT-1 promoter reporter constructs, we found that NF-κB sites at −583 or −251 relative to the transcription start site eliminated neuron-dependent reporter activation. Electrophoretic mobility shift and supershift assays reveal that p65 and p50 interact with these same sites ex vivo. Finally, chromatin immunoprecipitation (ChIP) showed that p65 and p50 interact with these sites in adult cortex, but not in kidney (a tissue that expresses no detectable GLT-1). Together, these studies strongly suggest that NF-κB contributes to neuron-dependent regulation of astrocytic GLT-1 transcription.
doi:10.1523/JNEUROSCI.0302-11.2011
PMCID: PMC3138498  PMID: 21697367
glutamate transport; NF-κB; astrocytes; p65; p50; EAAT2; GLT-1; IκBα
11.  α-Synuclein Negatively Regulates PKCδ Expression to Suppress Apoptosis in Dopaminergic Neurons by Reducing p300 HAT Activity 
We recently demonstrated that PKCδ, an important member of the novel PKC family, is a key oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce dopaminergic neuronal cell death. We now report a novel association between α-synuclein (αsyn), a protein associated with the pathogenesis of Parkinson’s diseases (PD), and PKCδ, in which αsyn negatively modulates the p300 and NFκB dependent transactivation to down-regulate proapoptotic kinase PKCδ expression and thereby protects against apoptosis in dopaminergic neuronal cells. Stable-expression human wild-type αsyn at physiological levels in dopaminergic neuronal cells resulted in an isoform-dependent transcriptional suppression of PKCδ expression without changes in the stability of mRNA and protein or DNA methylation. The reduction in PKCδ transcription was mediated, in part, through the suppression of constitutive NFκB activity targeted at two proximal PKCδ promoter κB sites. This occurred independently of NFκB/IκBα nuclear translocation, but was associated with decreased NFκB-p65 acetylation. Also, αsyn reduced p300 levels and its histone acetyl-transferase (HAT) activity, thereby contributing to diminished PKCδ transactivation. Importantly, reduced PKCδ and p300 expression also were observed within nigral dopaminergic neurons in αsyn transgenic mice. These findings expand the role of αsyn in neuroprotection by modulating the expression of the key proapoptotic kinase PKCδ in dopaminergic neurons.
doi:10.1523/JNEUROSCI.5634-10.2011
PMCID: PMC3041642  PMID: 21307242
α-synuclein; PKCδ; apoptosis; Parkinson’s disease; p300; NFκB
12.  Regulation of Succinate Dehydrogenase Activity by SIRT3 in Mammalian Mitochondria 
Biochemistry  2010;49(2):304-311.
A member of the sirtuin family of NAD+-dependent deacetylases, SIRT3 is identified as one of major mitochondrial deacetylase located in mammalian mitochondria responsible for deacetylation of several metabolic enzymes and components of oxidative phosphorylation. Regulation of protein deacetylation by SIRT3 is important for mitochondrial metabolism, cell survival and longevity. In this study, we identified one of the Complex II subunits, succinate dehydrogenase flavoprotein (SdhA) subunit, as a novel SIRT3 substrate in SIRT3 knock-out mice. Several acetylated Lys residues were mapped by tandem mass spectrometry and we determined the role of acetylation on Complex II activity in SIRT3 knock-out mice. In agreement with SIRT3 dependent activation of Complex I, we observed that deacetylation of SdhA subunit increased the Complex II activity in wild type mice. In addition, we treated K562 cell lines with nicotinamide and kaempferol to inhibit deacetylase activity of SIRT3 and stimulate SIRT3 expression, respectively. Stimulation of SIRT3 expression decreased acetylation of the SdhA subunit and increased Complex II activity in kaempherol-treated cells compared to control and nicotinamide treated cells. Evaluation of acetylated residues in SdhA crystal structure from porcine and chicken suggest that acetylation of the hydrophilic surface of SdhA may control the substrate entry to the active site of the protein and regulate the enzyme activity. Our findings constitute the first evidence for the regulation of Complex II activity by the reversible acetylation of the SdhA subunit as a novel substrate of the NAD+- dependent deacetylase, SIRT3.
doi:10.1021/bi901627u
PMCID: PMC2826167  PMID: 20000467
13.  Proteasome inhibitor-induced apoptosis is mediated by positive feed-back amplification of PKCδ proteolytic activation and mitochondrial translocation 
Emerging evidences implicate impaired protein degradation by the ubiquitin proteasome system (UPS) in Parkinson’s disease; however, cellular mechanisms underlying dopaminergic degeneration during proteasomal dysfunction are yet to be characterized. In the present study, we identified that the novel PKC isoform PKCδ plays a central role in mediating apoptotic cell death following UPS dysfunction in dopaminergic neuronal cells. Inhibition of proteasome function by MG-132 in dopaminergic neuronal cell model (N27 cells) rapidly depolarized mitochondria independent of ROS generation to activate the apoptotic cascade involving cytochrome c release, and caspase-9 and caspase-3 activation. PKCδ was a key downstream effector of caspase-3 because the kinase was proteolytically cleaved by caspase-3 following exposure to proteasome inhibitors MG-132 or lactacystin, resulting in a persistent increase in the kinase activity. Notably, MG-132 treatment resulted in translocation of proteolytically cleaved PKCδ fragments to mitochondria in a time-dependent fashion, and the PKCδ inhibition effectively blocked the activation of caspase-9 and caspase-3, indicating that the accumulation of the PKCδ catalytic fragment in the mitochondrial fraction possibly amplifies mitochondria-mediated apoptosis. Overexpression of the kinase active catalytic fragment of PKCδ (PKCδ-CF) but not the regulatory fragment (RF), or mitochondria-targeted expression of PKCδ-CF triggers caspase-3 activation and apoptosis. Furthermore, inhibition of PKCδ proteolytic cleavage by a caspase-3 cleavage-resistant mutant (PKCδ-CRM) or suppression of PKCδ expression by siRNA significantly attenuated MG-132-induced caspase-9 and -3 activation and DNA fragmentation. Collectively, these results demonstrate that proteolytically activated PKCδ has a significant feedback regulatory role in amplification of the mitochondria-mediated apoptotic cascade during proteasome dysfunction in dopaminergic neuronal cells.
doi:10.1111/j.1582-4934.2008.00293.x
PMCID: PMC2957660  PMID: 18298651
14.  Pre-synaptic regulation of astroglial excitatory neurotransmitter transporter GLT1 
Neuron  2009;61(6):880-894.
SUMMARY
The neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia play a central role in the regulation of synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. The astroglial mechanisms underlying this essential neuron-glial communication are not known. Here we show that presynaptic terminals are sufficient and necessary for GLT1/EAAT2 transcriptional activation and have identified the molecular pathway that regulates astroglial responses to presynaptic input. Presynaptic terminals regulate astroglial GLT1/EAAT2 via kappa B-motif binding phosphoprotein (KBBP), the mouse homologue of human heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds to an essential element of GLT1/EAAT2 promoter. This neuron-stimulated factor is required for GLT1/EATT2 transcriptional activation and is responsible for astroglial alterations in neural injury. Denervation of neuron-astrocyte signaling in vivo, by acute corticospinal tract transection, ricin-induced motor neuron death, or chronic neurodegeneration in amyotrophic lateral sclerosis (ALS) all result in reduced astroglial KBBP expression and transcriptional dysfunction of astroglial transporter expression. Our studies indicate that presynaptic elements dynamically coordinate normal astroglial function and also provide a fundamental signaling mechanism by which altered neuronal function and injury leads to dysregulated astroglia in CNS disease.
doi:10.1016/j.neuron.2009.02.010
PMCID: PMC2743171  PMID: 19323997
15.  Epigenetic Regulation of Neuron-Dependent Induction of Astroglial Synaptic Protein GLT1 
Glia  2010;58(3):277-286.
Astroglial glutamate transporter EAAT2/GLT1 prevents glutamate-induced excitotoxicity in the central nervous system. Expression of EAAT2/GLT1 is dynamically regulated by neurons. The pathogenesis of amyotrophic lateral sclerosis (ALS) involves astroglial dysfunction, including dramatic loss of EAAT2/GLT1. DNA methylation of gene promoters represents one of the most important epigenetic mechanisms in regulating gene expression. The involvement of DNA methylation in the regulation of astroglial EAAT2/GLT1 expression in different conditions, especially in ALS has not been explored. In this study, we established a procedure to selectively isolate a pure astrocyte population in vitro and in vivo from BAC GLT1 eGFP mice using an eGFP-based fluorescence-activated cell sorting approach. Astrocytes isolated from this procedure are GFAP+ and GLT1+ and respond to neuronal stimulation, enabling direct methylation analysis of GLT1 promoter in these astrocytes. To investigate the role of DNA methylation in physiological and pathological EAAT2/GLT1 expression, methylation status of the EAAT2/GLT1 promoter was analyzed in astrocytes from in vitro and in vivo paradigms or postmortem ALS motor cortex by bisulfite sequencing method. DNA demethylation on selective CpG sites of the GLT1 promoter was highly correlated to increased GLT1 mRNA levels in astrocytes in response to neuronal stimulation; however, low level of methylation was found on CpG sites of EAAT2 promoter from postmortem motor cortex of human amyotrophic lateral sclerosis patients. In summary, hypermethylation on selective CpG sites of the GLT1 promoter is involved in repression of GLT1 promoter activation, but this regulation does not play a role in astroglial dysfunction of EAAT2 expression in patients with ALS.
doi:10.1002/glia.20922
PMCID: PMC2794958  PMID: 19672971
epigenetic; astrocyte; GLT1
16.  Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta): Implications for neurodegeneration in Parkinson's disease 
Molecular Brain  2008;1:12.
Background
In previous work, we investigated dieldrin cytotoxicity and signaling cell death mechanisms in dopaminergic PC12 cells. Dieldrin has been reported to be one of the environmental factors correlated with Parkinson's disease and may selectively destroy dopaminergic neurons.
Methods
Here we further investigated dieldrin toxicity in a dopaminergic neuronal cell model of Parkinson's disease, namely N27 cells, using biochemical, immunochemical, and flow cytometric analyses.
Results
In this study, dieldrin-treated N27 cells underwent a rapid and significant increase in reactive oxygen species followed by cytochrome c release into cytosol. The cytosolic cytochrome c activated caspase-dependent apoptotic pathway and the increased caspase-3 activity was observed following a 3 hr dieldrin exposure in a dose-dependent manner. Furthermore, dieldrin caused the caspase-dependent proteolytic cleavage of protein kinase C delta (PKCδ) into 41 kDa catalytic and 38 kDa regulatory subunits in N27 cells as well as in brain slices. PKCδ plays a critical role in executing the apoptotic process in dieldrin-treated dopaminergic neuronal cells because pretreatment with the PKCδ inhibitor rottlerin, or transfection and over-expression of catalytically inactive PKCδK376R, significantly attenuates dieldrin-induced DNA fragmentation and chromatin condensation.
Conclusion
Together, we conclude that caspase-3-dependent proteolytic activation of PKCδ is a critical event in dieldrin-induced apoptotic cell death in dopaminergic neuronal cells.
doi:10.1186/1756-6606-1-12
PMCID: PMC2584097  PMID: 18945348
17.  Microarray Analysis of Oxidative Stress Regulated Genes in Mesencephalic Dopaminergic Neuronal Cells: Relevance to Oxidative Damage in Parkinson’s Disease 
Neurochemistry international  2007;50(6):834-847.
Oxidative stress and apoptotic cell death have been implicated in the dopaminergic cell loss that characterizes Parkinson’s disease. While factors contributing to apoptotic cell death are not well characterized, oxidative stress is known to activate an array of cell signaling molecules that participate in apoptotic cell death mechanisms. We investigated oxidative stress-induced cytotoxicity of hydrogen peroxide (H2O2) in three cell lines, the dopaminergic mesencephalon-derived N27 cell line, the GABAergic striatum-derived M213-20 cell line, and the hippocampal HN2-5 cell line. N27 cells were more sensitive to H2O2-induced cell death than M213-20 and HN2-5 cells. H2O2 induced significantly greater increases in caspase-3 activity in N27 cells than in M213-20 cells. H2O2-induced apoptotic cell death in N27 cells was mediated by caspase-3-dependent proteolytic activation of PKCδ. Gene expression microarrays were employed to examine the specific transcriptional changes in N27 cells exposed to 100 μM H2O2 for 4 hrs. Changes in genes encoding pro- or anti-apoptotic proteins included up-regulation of BIK, PAWR, STAT5B, NPAS2, Jun B, MEK4, CCT7, PPP3CC and PSDM3, while key down-regulated genes included BNIP3, NPTXR, RAGA, STK6, YWHAH, and MAP2K1. Overall, the changes indicate a modulation of transcriptional activity, chaperone activity, kinase activity, and apoptotic activity that appears highly specific, coordinated and relevant to cell survival. Utilizing this in vitro model to identify novel oxidative stress-regulated genes may be useful in unraveling the molecular mechanisms underlying dopaminergic degeneration in Parkinson’s disease.
doi:10.1016/j.neuint.2007.02.003
PMCID: PMC1950670  PMID: 17397968
mitochondria; oxidative stress; gene expression; caspases; PKCdelta; Parkinson’s disease

Results 1-17 (17)