Search tips
Search criteria

Results 1-25 (71)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  The reverse operation of Na+/Cl−-coupled neurotransmitter transporters–why amphetamines take two to tango 
Journal of neurochemistry  2009;112(2):340-355.
Sodium-chloride coupled neurotransmitter transporters achieve reuptake of their physiological substrate by exploiting the pre-existing sodium-gradient across the cellular membrane. This terminates the action of previously released substrate in the synaptic cleft. However, a change of the transmembrane ionic gradients or specific binding of some psychostimulant drugs to these proteins, like amphetamine and its derivatives, induce reverse operation of neurotransmitter:sodium symporters. This effect eventually leads to an increase in the synaptic concentration of non-exocytotically released neurotransmitters [and – in the case of the norepinephrine transporters, underlies the well-known indirect sympathomimetic activity]. While this action has long been appreciated, the underlying mechanistic details have been surprisingly difficult to understand. Some aspects can be resolved by incorporating insights into the oligomeric nature of transporters, into the nature of the accompanying ion fluxes, and changes in protein kinase activities.
PMCID: PMC4497806  PMID: 19891736
carrier-mediated release; clinical therapeutics; drug targets; neurotransmitter transporters; reverse operation; transporter-mediated release
2.  Amphetamine Action at the Cocaine- and Antidepressant-Sensitive Serotonin Transporter Is Modulated by αCaMKII 
The Journal of Neuroscience  2015;35(21):8258-8271.
Serotonergic neurotransmission is terminated by reuptake of extracellular serotonin (5-HT) by the high-affinity serotonin transporter (SERT). Selective 5-HT reuptake inhibitors (SSRIs) such as fluoxetine or escitalopram inhibit SERT and are currently the principal treatment for depression and anxiety disorders. In addition, SERT is a major molecular target for psychostimulants such as cocaine and amphetamines. Amphetamine-induced transport reversal at the closely related dopamine transporter (DAT) has been shown previously to be contingent upon modulation by calmodulin kinase IIα (αCaMKII). Here, we show that not only DAT, but also SERT, is regulated by αCaMKII. Inhibition of αCaMKII activity markedly decreased amphetamine-triggered SERT-mediated substrate efflux in both cells coexpressing SERT and αCaMKII and brain tissue preparations. The interaction between SERT and αCaMKII was verified using biochemical assays and FRET analysis and colocalization of the two molecules was confirmed in primary serotonergic neurons in culture. Moreover, we found that genetic deletion of αCaMKII impaired the locomotor response of mice to 3,4-methylenedioxymethamphetamine (also known as “ecstasy”) and blunted d-fenfluramine-induced prolactin release, substantiating the importance of αCaMKII modulation for amphetamine action at SERT in vivo as well. SERT-mediated substrate uptake was neither affected by inhibition of nor genetic deficiency in αCaMKII. This finding supports the concept that uptake and efflux at monoamine transporters are asymmetric processes that can be targeted separately. Ultimately, this may provide a molecular mechanism for putative drug developments to treat amphetamine addiction.
PMCID: PMC4444546  PMID: 26019340
addiction; amphetamines; monoamine transporters; reverse transport; serotonin
3.  Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates 
Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [3H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., 4 doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, two weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [3H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT.
PMCID: PMC3988539  PMID: 24287719
serotonin (5-HT) release; 5-HT depletion; 5-HT transporter (SERT); SERT substrate; SERT-mediated current
4.  The High-Affinity Binding Site for Tricyclic Antidepressants Resides in the Outer Vestibule of the Serotonin TransporterⓈ 
Molecular pharmacology  2010;78(6):1026-1035.
The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuTAa) has been used as a model for mammalian Na+/Cl−-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuTAa liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERTY95F mutation, which greatly reduced the affinity for [3H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [3H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP+, paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants.
PMCID: PMC4513247  PMID: 20829432
5.  Involvement of serotonin transporter extracellular loop 1 in serotonin binding and transport 
Molecular membrane biology  2008;25(2):115-127.
Residues Tyr-110 through Gly-115 of serotonin transporter were replaced, one at a time, with cysteine. Of these mutants, only G113C retained full activity for transport, Q111C and N112C retained partial activity, but Y110C, G114C and G115C were inactive. Poor surface expression was at least partly responsible for the lack of transport by G114C and G115C. In membrane preparations, Y110C through G113C all bound a high affinity cocaine analog similarly to the wild type. Treatment with methanethiosulfonate reagents increased the transport activity of Q111C and N112C to essentially wild-type levels but had no measurable effect on the other mutants. The decreased activity of Q111C and N112C resulted from an increase in the KM for serotonin that was not accompanied by a decrease in serotonin binding affinity. Superfusion experiments indicated a defect in 5-HTexchange. Modification of the inserted cysteine residues reversed the increase in KM and the poor exchange, also with no effect on serotonin affinity. The results suggest that Gln-111 and Asn-112 are not required for substrate binding but participate in subsequent steps in the transport cycle.
PMCID: PMC4510095  PMID: 18307099
Serotonin; transporter; extracellular loop; mutagenesis; cysteine scanning
6.  N,N-dimethyl-thioamphetamine and methyl-thioamphetamine, two non-neurotoxic substrates of 5-HT transporters, have scant in vitro efficacy for the induction of transporter-mediated 5-HT release and currents 
Journal of neurochemistry  2008;105(5):1770-1780.
We studied two non-neurotoxic amphetamine derivatives (methyl-thioamphetamine, MTA and N,N-dimethylMTA, DMMTA) interacting with serotonin (5-HT) transporters (SERTs) with affinities comparable to that of p-Cl-amphetamine (pCA). The rank order for their maximal effects in inducing both [3H]5-HT release from rat brain synaptosomes or hSERT-expressing HEK-293 cells, and currents in hSERT-expressing oocytes, was pCA » MTA ≥ DMMTA. A correlation between drug-induced release and currents is also strengthened by the similar bell shape of the dose–response curves. Release experiments indicated that MTA and DMMTA are SERT substrates although MTA is taken up by HEK-293 cells with a Vmax 40% lower than pCA. The weak effects of MTA and DMMTA in vitro might therefore be due to their properties as ‘partial substrates’ on the mechanisms, other than translocation, responsible for currents and/or release. After either local or systemic in vivo administration, MTA and DMMTA release 5-HT in a manner comparable to pCA. These findings confirm that the neurotoxic properties of some amphetamine derivatives are independent of their 5-HT-releasing activity in vivo. It is worth noting that only those amphetamine derivatives with high efficiency in inducing 5-HT release and currents in vitro have neurotoxic properties.
PMCID: PMC4502523  PMID: 18248615
methyl-thioamphetamine; N,N-dimethyl-thioamphetamine; neurotoxicity; p-Cl-amphetamine; serotonin release; serotonin transporters
7.  Imaging genetics of mood disorders 
NeuroImage  2010;53(3):810-821.
Mood disorders are highly heritable and have been linked to brain regions of emotion processing. Over the past few years, an enormous amount of imaging genetics studies has demonstrated the impact of risk genes on brain regions and systems of emotion processing in vivo in healthy subjects as well as in mood disorder patients. While sufficient evidence already exists for several monaminergic genes as well as for a few nonmonoaminergic genes, such as brain-derived neurotrophic factor (BDNF) in healthy subjects, many others only have been investigated in single studies so far. Apart from these studies, the present review also covers imaging genetics studies applying more complex genetic disease models of mood disorders, such as epistasis and gene–environment interactions, and their impact on brain systems of emotion processing. This review attempts to provide a comprehensive overview of the rapidly growing field of imaging genetics studies in mood disorder research.
PMCID: PMC4502568  PMID: 20156570
Imaging genetics; Mood disorders; Major depressive disorder; Emotion; Amygdala; Anterior cingulate cortex; Ventromedial prefrontal cortex; Orbitofrontal cortex; Hippocampus; Functional connectivity; Genetics; Phenotype–genotype
8.  A multivariate approach linking reported side effects of clinical antidepressant and antipsychotic trials to in vitro binding affinities 
The vast majority of approved antidepressants and antipsychotics exhibit a complex pharmacology. The mechanistic understanding of how these psychotropic medications are related to adverse drug reactions (ADRs) is crucial for the development of novel drug candidates and patient adherence. This study aims to associate in vitro assessed binding affinity profiles (39 compounds, 24 molecular drug targets) and ADRs (n=22) reported in clinical trials of antidepressants and antipsychotics (n>59.000 patients) by the use of robust multivariate statistics. Orthogonal projection to latent structures (O-PLS) regression models with reasonable predictability were found for several frequent ADRs such as nausea, diarrhea, hypotension, dizziness, headache, insomnia, sedation, sleepiness, increased sweating, and weight gain. Results of the present study support many well-known pharmacological principles such as the association of hypotension and dizziness with α1-receptor or sedation with H1-receptor antagonism. Moreover, the analyses revealed novel or hardly investigated mechanisms for common ADRs including the potential involvement of 5-HT6-antagonism in weight gain, muscarinic receptor antagonism in dizziness, or 5-HT7-antagonism in sedation. To summarize, the presented study underlines the feasibility and value of a multivariate data mining approach in psychopharmacological development of antidepressants and antipsychotics.
PMCID: PMC4502613  PMID: 25044049
Schizophrenia; Depressive disorder; Antidepressive agents; Antipsychotic agents; Clinical pharmacology; Adverse effects
9.  Amphetamines, new psychoactive drugs and the monoamine transporter cycle 
In monoaminergic neurons, the vesicular transporters and the plasma membrane transporters operate in a relay. Amphetamine and its congeners target this relay to elicit their actions: most amphetamines are substrates, which pervert the relay to elicit efflux of monoamines into the synaptic cleft. However, some amphetamines act as transporter inhibitors. Both compound classes elicit profound psychostimulant effects, which render them liable to recreational abuse. Currently, a surge of new psychoactive substances occurs on a global scale. Chemists bypass drug bans by ingenuous structural variations, resulting in a rich pharmacology. A credible transport model must account for their distinct mode of action and link this to subtle differences in activity and undesired, potentially deleterious effects.
PMCID: PMC4502921  PMID: 25542076
psychostimulant; amphetamine; reverse transport; regulation; monoamine transporter; addiction
10.  The Endoplasmic Reticulum Exit of Glutamate Transporter Is Regulated by the Inducible Mammalian Yip6b/GTRAP3-18 Protein*Ⓢ 
The Journal of biological chemistry  2007;283(10):6175-6183.
GTRAP3-18 interacts with and reduces the activity of the neuronal specific Na+/K+ glutamate transporter, EAAC1 both in vitro and in vivo. GTRAP3-18 and the related isoform, JM4, are distant relatives of the Rab GTPase-interacting factor PRA1, and share a topology of four transmembrane domains and cytosolic termini. GTRAP3-18 and JM4 are resident endoplasmic reticulum (ER) proteins. The physiological role of GTRAP3-18 is poorly understood. We demonstrate for the first time that GTRAP3-18 is a regulator of ER protein trafficking. Expression of GTRAP3-18 delays the ER exit of EAAC1, as well as other members of the excitatory amino acid transporter family. GTRAP3-18 uses hydrophobic domain interactions in the ER membrane to self-associate and cytoplasmic interactions at the C terminus to regulate trafficking. The features of GTRAP3-18 activity are consistent with recent phylogenic sequence analyses suggesting GTRAP3-18 and JM4 be reclassified as mammalian isoforms of the yeast protein family Yip, Yip6b, and Yip6a, respectively.
PMCID: PMC4502942  PMID: 18167356
11.  The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization 
Human organic cation transporter 2 (hOCT2) is involved in transport of many endogenous and exogenous organic cations, mainly in kidney and brain cells. Because the quaternary structure of transmembrane proteins plays an essential role for their cellular trafficking and function, we investigated whether hOCT2 forms oligomeric complexes, and if so, which part of the transporter is involved in the oligomerization. A yeast 2-hybrid mating-based split-ubiquitin system (mbSUS), fluorescence resonance energy transfer, Western blot analysis, cross-linking experiments, immunofluorescence, and uptake measurements of the fluorescent organic cation 4-(4-(dimethylamino) styryl)-N-methylpyridinium were applied to human embryonic kidney 293 (HEK293) cells transfected with hOCT2 and partly also to freshly isolated human proximal tubules. The role of cysteines for oligomerization and trafficking of the transporter to the plasma membranes was investigated in cysteine mutants of hOCT2. hOCT2 formed oligomers both in the HEK293 expression system and in native human kidneys. The cysteines of the large extracellular loop are important to enable correct folding, oligomeric assembly, and plasma membrane insertion of hOCT2. Mutation of the first and the last cysteines of the loop at positions 51 and 143 abolished oligomer formation. Thus, the cysteines of the extracellular loop are important for correct trafficking of the transporter to the plasma membrane and for its oligomerization.—Brast, S., Grabner, A., Sucic, S., Sitte, H. H., Hermann, E., Pavenstädt, H., Schlatter, E., and Ciarimboli, G. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization.
PMCID: PMC4503226  PMID: 22085643
hOCT2; site-directed mutagenesis; regulation
12.  Glycine Transporter Dimers 
The Journal of biological chemistry  2008;283(16):10978-10991.
Different Na+/Cl−-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2 by fluorescence resonance energy transfer microscopy. Endoglycosidase treatment and surface biotinylation further revealed that complex-glycosylated GlyTs form dimers located at the cell surface. Furthermore, substitution of tryptophan 469 of GlyT2 by an arginine generated a transporter deficient in dimerization that was retained intracellulary. Based on these results and GlyT structures modeled by using the crystal structure of the bacterial homolog LeuTAa, as a template, residues located within the extracellular loop 3 and at the beginning of transmembrane domain 6 are proposed to contribute to the dimerization interface of GlyTs.
PMCID: PMC4503265  PMID: 18252709
13.  Sec24- and ARFGAP1-Dependent Trafficking of GABA Transporter-1 Is a Prerequisite for Correct Axonal Targeting 
The GABA transporter-1 (GAT1) is a prototypical protein of the synaptic specialization. Export of GAT1 from the endoplasmic reticulum (ER) is contingent on its interaction with the COPII (coatomer protein-II) coat subunit Sec24D. Here we show that silencing all four Sec24 isoforms strongly inhibits transport of GAT1 to the cell surface. In contrast, transport of GAT1-RL/AS, a mutant that is deficient in Sec24D recruitment, was not inhibited, suggesting a nonconventional, COPII-independent pathway. However, ARFGAP1 bound directly to the C terminus of both GAT1-RL/AS and wild-type GAT1. Surface expression of GAT1-RL/AS involved ARFGAP1. GAT1-RL/AS appeared to bypass the ER-Golgi-intermediate compartment, but its pathway to the plasma membrane still involved passage through the Golgi. Thus, the GAT1-RL/AS mutant allowed to test whether COPII-dependent ER-export is required for correct sorting of GAT1 to the axon terminal in neuronal cells. In contrast to wild-type GAT1, GAT1-RL/AS failed to be specifically enriched at the tip of neurite extensions of CAD.a cells (a neuroblastoma cell line that can be differentiated into a neuron-like phenotype) and in the axon terminals of hippocampal neurons. These findings indicate that correct sorting to the axon is contingent on ER export via the COPII machinery and passage through the ER-Golgi-intermediate compartment.
PMCID: PMC4503341  PMID: 19020038
GABA transporter-1; axonal targeting; ARFGAP1; COPII; Sec24; endoplasmic reticulum export
14.  Subtype-Specific Differences in Corticotropin-Releasing Factor Receptor Complexes Detected by Fluorescence Spectroscopy 
Molecular pharmacology  2009;76(6):1196-1210.
G protein-coupled receptors have been proposed to exist in signalosomes subject to agonist-driven shifts in the assembly disassembly equilibrium, affected by stabilizing membrane lipids and/or cortical actin restricting mobility. We investigated the highly homologous corticotropin-releasing factor receptors (CRFRs), CRFR1 and -2, which are different within their hydrophobic core. Agonist stimulation of CRFR1 and CRFR2 gave rise to similar concentration-response curves for cAMP accumulation, but CRFR2 underwent restricted collision coupling. Both CRFR1 and CRFR2 formed constitutive oligomers at the cell surface and recruited β-arrestin upon agonist activation (as assessed by fluorescence resonance energy transfer microscopy in living cells). However, CRFR2, but not CRFR1, failed to undergo agonist-induced internalization. Likewise, agonist binding accelerated the diffusion rate of CRFR2 only (detected by fluorescence recovery after photobleaching and fluorescence correlation spectroscopy) but reduced the mobile fraction, which is indicative of local confinement. Fluorescence intensity distribution analysis demonstrated that the size of CRFR complexes was not changed. Disruption of the actin cytoskeleton abolished the agonist-dependent increase in CRFR2 mobility, shifted the agonist concentration curve for CRFR2 to the left, and promoted agonist-induced internalization of CRFR2. Our observations are incompatible with an agonist-induced change in monomer-oligomer equilibrium, but they suggest an agonist-induced redistribution of CRFR2 into a membrane microdomain that affords rapid diffusion but restricted mobility and that is stabilized by the actin cytoskeleton. Our data show that membrane anisotropy can determine the shape and duration of receptor-generated signals in a subtype-specific manner.
PMCID: PMC4503342  PMID: 19755522
15.  Pore-Exposed Tyrosine Residues of P-Glycoprotein Are Important Hydrogen-Bonding Partners for Drugs* 
Molecular pharmacology  2013;85(3):420-428.
The multispecific efflux transporter, P-glycoprotein, plays an important role in drug disposition. Substrate translocation occurs along the interface of its transmembrane domains. The rotational C2 symmetry of ATP-binding cassette transporters implies the existence of two symmetry-related sets of substrate-interacting amino acids. These sets are identical in homodimeric transporters, and remain evolutionary related in full transporters, such as P-glycoprotein, in which substrates bind preferentially, but nonexclusively, to one of two binding sites. We explored the role of pore-exposed tyrosines for hydrogen-bonding interactions with propafenone type ligands in their preferred binding site 2. Tyrosine 953 is shown to form hydrogen bonds not only with propafenone analogs, but also with the preferred site 1 substrate rhodamine123. Furthermore, an accessory role of tyrosine 950 for binding of selected propafenone analogs is demonstrated. The present study demonstrates the importance of domain interface tyrosine residues for interaction of small molecules with P-glycoprotein.
PMCID: PMC4503343  PMID: 24366667
16.  The ugly side of amphetamines: short- and long-term toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’), methamphetamine and d-amphetamine 
Biological chemistry  2011;392(0):103-115.
Amphetamine (‘Speed’), methamphetamine (‘Ice’) and its congener 3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) are illicit drugs abused worldwide for their euphoric and stimulant effects. Despite compelling evidence for chronic MDMA neurotoxicity in animal models, the physiological consequences of such toxicity in humans remain unclear. In addition, distinct differences in the metabolism and pharmacokinetics of MDMA between species and different strains of animals prevent the rationalisation of realistic human dose paradigms in animal studies. Here, we attempt to review amphetamine toxicity and in particular MDMA toxicity in the pathogenesis of exemplary human pathologies, independently of confounding environmental factors such as poly-drug use and drug purity.
PMCID: PMC4497800  PMID: 21194370
addiction; amphetamine; disease; 3,4-methylenedioxymethamphetamine (MDMA)
17.  Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif 
Journal of cell science  2008;121(0 6):753-761.
The C-terminus of GABA transporter 1 (GAT1, SLC6A1) is required for trafficking of the protein through the secretory pathway to reach its final destination, i.e. the rim of the synaptic specialization. We identified a motif of three hydrophobic residues (569VMI571) that was required for export of GAT1 from the ER-Golgi intermediate compartment (ERGIC). This conclusion was based on the following observations: (i) GAT1-SSS, the mutant in which 569VMI571 was replaced by serine residues, was exported from the ER in a COPII-dependent manner but accumulated in punctate structures and failed to reach the Golgi; (ii) under appropriate conditions (imposing a block at 15°C, disruption of COPI), these structures also contained ERGIC53; (iii) the punctae were part of a dynamic compartment, because it was accessible to a second anterograde cargo [the temperature-sensitive variant of vesicular stomatitis virus G protein (VSV-G)] and because GAT1-SSS could be retrieved from the punctate structures by addition of a KKxx-based retrieval motif, which supported retrograde transport to the ER. To the best of our knowledge, the VMI-motif of GAT1 provides the first example of a cargo-based motif that specifies export from the ERGIC.
PMCID: PMC4497808  PMID: 18285449
GABA transporter-1; ER-to-Golgi trafficking; ERGIC
18.  Axonal Targeting of the Serotonin Transporter in Cultured Rat Dorsal Raphe Neurons Is Specified by SEC24C-Dependent Export from the Endoplasmic Reticulum 
Export of the serotonin transporter (SERT) from the endoplasmic reticulum (ER) is mediated by the SEC24C isoform of the coatomer protein-II complex. SERT must enter the axonal compartment and reach the presynaptic specialization to perform its function, i.e., the inward transport of serotonin. Refilling of vesicles is contingent on the operation of an efficient relay between SERT and the vesicular monoamine transporter-2 (VMAT2). Here, we visualized the distribution of both endogenously expressed SERT and heterologously expressed variants of human SERT in dissociated rat dorsal raphe neurons to examine the role of SEC24C-dependent ER export in axonal targeting of SERT. We conclude that axonal delivery of SERT is contingent on recruitment of SEC24C in the ER. This conclusion is based on the following observations. (1) Both endogenous and heterologously expressed SERT were delivered to the extensive axonal arborizations and accumulated in bouton-like structures. (2) In contrast, SERT–607RI608–AA, in which the binding site of SEC24C is disrupted, remained confined to the microtubule-associated protein 2-positive somatodendritic compartment. (3) The overexpression of dominant-negative SEC24C–D796V/D797N (but not of the corresponding SEC24D mutant) redirected both endogenous SERT and heterologously expressed yellow fluorescent protein–SERT from axons to the somatodendritic region. (4) SERT–K610Y, which harbors a mutation converting it into an SEC24D client, was rerouted from the axonal to the somatodendritic compartment by dominant-negative SEC24D. In contrast, axonal targeting of the VMAT2 was disrupted by neither dominant-negative SEC24C nor dominant-negative SEC24D. This suggests that SERT and VMAT2 reach the presynaptic specialization by independent routes.
PMCID: PMC4497811  PMID: 24790205
axonal delivery; raphe neurons; serotonin transporter; somatodendritic targeting; vesicular monoamine transporter-2
19.  Peptide-Based Interactions with Calnexin Target Misassembled Membrane Proteins into Endoplasmic Reticulum-Derived Multilamellar Bodies 
Journal of molecular biology  2008;378(2):337-352.
Oligomeric assembly of neurotransmitter transporters is a prerequisite for their export from the endoplasmic reticulum (ER) and their subsequent delivery to the neuronal synapse. We previously identified mutations, e.g., in the γ-aminobutyric acid (GABA) transporter-1 (GAT1), which disrupted assembly and caused retention of the transporter in the ER. Using one representative mutant, GAT1-E101D, we showed here that ER retention was due to association of the transporter with the ER chaperone calnexin: interaction with calnexin led to accumulation of GAT1 in concentric bodies corresponding to previously described multilamellar ER-derived structures. The transmembrane domain of calnexin was necessary and sufficient to direct the protein into these concentric bodies. Both yellow fluorescent protein-tagged versions of wild-type GAT1 and of the GAT1-E101D mutant remained in disperse (i.e., non-aggregated) form in these concentric bodies, because fluorescence recovered rapidly (t1/2 ~500 ms) upon photobleaching. Fluorescence energy resonance transfer microscopy was employed to visualize a tight interaction of GAT1-E101D with calnexin. Recognition by calnexin occurred largely in a glycan-independent manner and, at least in part, at the level of the transmembrane domain. Our findings are consistent with a model in which the transmembrane segment of calnexin participates in chaperoning the inter- and intramolecular arrangement of hydrophobic segment in oligomeric proteins.
PMCID: PMC4493858  PMID: 18367207
calnexin; neurotransmitter transporters; GABA transporter-1; G protein-coupled receptors; transmembrane domains
20.  Reduced default mode network suppression during a working memory task in remitted major depression 
Insufficient default mode network (DMN) suppression was linked to increased rumination in symptomatic Major Depressive Disorder (MDD). Since rumination is known to predict relapse and a more severe course of MDD, we hypothesized that similar DMN alterations might also exist during full remission of MDD (rMDD), a condition known to be associated with increased relapse rates specifically in patients with adolescent onset. Within a cross-sectional functional magnetic resonance imaging study activation and functional connectivity (FC) were investigated in 120 adults comprising 78 drug-free rMDD patients with adolescent- (n = 42) and adult-onset (n = 36) as well as 42 healthy controls (HC), while performing the n-back task. Compared to HC, rMDD patients showed diminished DMN deactivation with strongest differences in the anterior-medial prefrontal cortex (amPFC), which was further linked to increased rumination response style. On a brain systems level, rMDD patients showed an increased FC between the amPFC and the dorsolateral prefrontal cortex, which constitutes a key region of the antagonistic working-memory network. Both whole-brain analyses revealed significant differences between adolescent-onset rMDD patients and HC, while adult-onset rMDD patients showed no significant effects. Results of this study demonstrate that reduced DMN suppression exists even after full recovery of depressive symptoms, which appears to be specifically pronounced in adolescent-onset MDD patients. Our results encourage the investigation of DMN suppression as a putative predictor of relapse in clinical trials, which might eventually lead to important implications for antidepressant maintenance treatment.
•Reduced default mode network suppression persists even after remission of MDD symptoms.•Adolescent-onset rMDD patients show stronger alterations likely reflecting the more severe disease course.•The anterior-medial prefrontal cortex appears to be the mediator of these brain network changes in rMDD patients.•Reduced default mode network suppression is related to increased rumination.
PMCID: PMC4415908  PMID: 25801734
Default mode network; Functional magnetic resonance imaging; Major depressive disorder; Remission; Rumination; Working memory
21.  A Salt Bridge Linking the First Intracellular Loop with the C Terminus Facilitates the Folding of the Serotonin Transporter* 
The Journal of Biological Chemistry  2015;290(21):13263-13278.
Background: The C terminus of the serotonin transporter (SERT) is required for folding.
Results: Replacing C-terminal residues (Phe604, Ile608, and Ile612 by Gln and Glu615 by Lys) caused misfolding of SERT. A charge reversal (R152E) rescued SERT-E615K.
Conclusion: An amphipathic C-terminal helix interacts with the first intracellular loop to facilitate folding of SERT.
Significance: These data provide insights into the folding trajectory of SERT and related transporters.
The folding trajectory of solute carrier 6 (SLC6) family members is of interest because point mutations result in misfolding and thus cause clinically relevant phenotypes in people. Here we examined the contribution of the C terminus in supporting folding of the serotonin transporter (SERT; SLC6A4). Our working hypothesis posited that the amphipathic nature of the C-terminal α-helix (Thr603–Thr613) was important for folding of SERT. Accordingly, we disrupted the hydrophobic moment of the α-helix by replacing Phe604, Ile608, or Ile612 by Gln. The bulk of the resulting mutants SERT-F604Q, SERT-I608Q, and SERT-I612Q were retained in the endoplasmic reticulum, but their residual delivery to the cell surface still depended on SEC24C. This indicates that the amphipathic nature of the C-terminal α-helix was dispensable to endoplasmic reticulum export. The folding trajectory of SERT is thought to proceed through the inward facing conformation. Consistent with this conjecture, cell surface expression of the misfolded mutants was restored by (i) introducing second site suppressor mutations, which trap SERT in the inward facing state, or (ii) by the pharmacochaperone noribogaine, which binds to the inward facing conformation. Finally, mutation of Glu615 at the end of the C-terminal α-helix to Lys reduced surface expression of SERT-E615K. A charge reversal mutation in intracellular loop 1 restored surface expression of SERT-R152E/E615K to wild type levels. These observations support a mechanistic model where the C-terminal amphipathic helix is stabilized by an intramolecular salt bridge between residues Glu615 and Arg152. This interaction acts as a pivot in the conformational search associated with folding of SERT.
PMCID: PMC4505579  PMID: 25869136
dopamine transporter; endoplasmic reticulum (ER); protein folding; serotonin transporter; trafficking; amphipathic helix; pharmacochaperoning
22.  A Binding Mode Hypothesis of Tiagabine Confirms Liothyronine Effect on γ-Aminobutyric Acid Transporter 1 (GAT1) 
Journal of Medicinal Chemistry  2015;58(5):2149-2158.
Elevating GABA levels in the synaptic cleft by inhibiting its reuptake carrier GAT1 is an established approach for the treatment of CNS disorders like epilepsy. With the increasing availability of crystal structures of transmembrane transporters, structure-based approaches to elucidate the molecular basis of ligand–transporter interaction also become feasible. Experimental data guided docking of derivatives of the GAT1 inhibitor tiagabine into a protein homology model of GAT1 allowed derivation of a common binding mode for this class of inhibitors that is able to account for the distinct structure–activity relationship pattern of the data set. Translating essential binding features into a pharmacophore model followed by in silico screening of the DrugBank identified liothyronine as a drug potentially exerting a similar effect on GAT1. Experimental testing further confirmed the GAT1 inhibiting properties of this thyroid hormone.
PMCID: PMC4360375  PMID: 25679268
23.  PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein 
Nature chemical biology  2014;10(7):582-589.
Phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates the function of ion channels and transporters. Here, we demonstrate that PIP2 directly binds the human dopamine (DA) transporter (hDAT), a key regulator of DA homeostasis and a target of the psychostimulant amphetamine (AMPH). This binding occurs through electrostatic interactions with positively charged hDAT N-terminal residues and is shown to facilitate AMPH-induced, DAT-mediated DA efflux and the psychomotor properties of AMPH. Substitution of these residues with uncharged amino acids reduces hDAT-PIP2 interactions and AMPH-induced DA efflux, without altering the hDAT physiological function of DA uptake. We evaluated, for the first time, the significance of this interaction in vivo using locomotion as a behavioral assay in Drosophila melanogaster. Expression of mutated hDAT with reduced PIP2 interaction in Drosophila DA neurons impairs AMPH-induced locomotion without altering basal locomotion. We present the first demonstration of how PIP2 interactions with a membrane protein can regulate the behaviors of complex organisms.
PMCID: PMC4062427  PMID: 24880859
dopamine; transporter; amphetamine; Drosophila melanogaster; phosphatidylinositol 4,5-bisphosphate
24.  In Vivo Amphetamine Action is Contingent on αCaMKII 
Neuropsychopharmacology  2014;39(11):2681-2693.
Addiction to psychostimulants (ie, amphetamines and cocaine) imposes a major socioeconomic burden. Prevention and treatment represent unmet medical needs, which may be addressed, if the mechanisms underlying psychostimulant action are understood. Cocaine acts as a blocker at the transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET), but amphetamines are substrates that do not only block the uptake of monoamines but also induce substrate efflux by promoting reverse transport. Reverse transport has been a focus of research for decades but its mechanistic basis still remains enigmatic. Recently, transporter-interacting proteins were found to regulate amphetamine-triggered reverse transport: calmodulin kinase IIα (αCaMKII) is a prominent example, because it binds the carboxyl terminus of DAT, phosphorylates its amino terminus, and supports amphetamine-induced substrate efflux in vitro. Here, we investigated whether, in vivo, the action of amphetamine was contingent on the presence of αCaMKII by recording the behavioral and neurochemical effects of amphetamine. Measurement of dopamine efflux in the dorsal striatum by microdialysis revealed that amphetamine induced less dopamine efflux in mice lacking αCaMKII. Consistent with this observation, the acute locomotor responses to amphetamine were also significantly blunted in αCaMKII-deficient mice. In addition, while the rewarding properties of amphetamine were preserved in αCaMKII-deficient mice, their behavioral sensitization to amphetamine was markedly reduced. Our findings demonstrate that amphetamine requires the presence of αCaMKII to elicit a full-fledged effect on DAT in vivo: αCaMKII does not only support acute amphetamine-induced dopamine efflux but is also important in shaping the chronic response to amphetamine.
PMCID: PMC4207348  PMID: 24871545
25.  A Cytosolic Relay of Heat Shock Proteins HSP70-1A and HSP90β Monitors the Folding Trajectory of the Serotonin Transporter* 
The Journal of Biological Chemistry  2014;289(42):28987-29000.
Background: Naturally occurring mutations in solute carrier 6 (SLC6) family members impair folding of these transporters.
Results: Folding-deficient SERT mutants bound heat shock protein (HSP)70-1A, HSP90β, and co-chaperones. Noribogaine synergized with HSP inhibitors in rescuing these SERT mutants.
Conclusion: Folding of SERT is assisted by a cytosolic HSP relay.
Significance: The folding trajectory of SERT is relevant to folding diseases arising from mutated SLC6 transporters.
Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay.
PMCID: PMC4200255  PMID: 25202009
Glycosylation; Heat Shock Protein (HSP); Heat Shock Protein 90 (Hsp90); Serotonin; Serotonin Transporter; Trafficking; Transporter

Results 1-25 (71)