PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (37)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Large-scale replication and heterogeneity in Parkinson disease genetic loci 
Sharma, Manu | Ioannidis, John P.A. | Aasly, Jan O. | Annesi, Grazia | Brice, Alexis | Van Broeckhoven, Christine | Bertram, Lars | Bozi, Maria | Crosiers, David | Clarke, Carl | Facheris, Maurizio | Farrer, Matthew | Garraux, Gaetan | Gispert, Suzana | Auburger, Georg | Vilariño-Güell, Carles | Hadjigeorgiou, Georgios M. | Hicks, Andrew A. | Hattori, Nobutaka | Jeon, Beom | Lesage, Suzanne | Lill, Christina M. | Lin, Juei-Jueng | Lynch, Timothy | Lichtner, Peter | Lang, Anthony E. | Mok, Vincent | Jasinska-Myga, Barbara | Mellick, George D. | Morrison, Karen E. | Opala, Grzegorz | Pramstaller, Peter P. | Pichler, Irene | Park, Sung Sup | Quattrone, Aldo | Rogaeva, Ekaterina | Ross, Owen A. | Stefanis, Leonidas | Stockton, Joanne D. | Satake, Wataru | Silburn, Peter A. | Theuns, Jessie | Tan, Eng-King | Toda, Tatsushi | Tomiyama, Hiroyuki | Uitti, Ryan J. | Wirdefeldt, Karin | Wszolek, Zbigniew | Xiromerisiou, Georgia | Yueh, Kuo-Chu | Zhao, Yi | Gasser, Thomas | Maraganore, Demetrius | Krüger, Rejko | Boyle, R.S | Sellbach, A | O'Sullivan, J.D. | Sutherland, G.T. | Siebert, G.A | Dissanayaka, N.N.W | Van Broeckhoven, Christine | Theuns, Jessie | Crosiers, David | Pickut, Barbara | Engelborghs, Sebastiaan | Meeus, Bram | De Deyn, Peter P. | Cras, Patrick | Rogaeva, Ekaterina | Lang, Anthony E | Agid, Y | Anheim, M | Bonnet, A-M | Borg, M | Brice, A | Broussolle, E | Corvol, JC | Damier, P | Destée, A | Dürr, A | Durif, F | Lesage, S | Lohmann, E | Pollak, P | Rascol, O | Tison, F | Tranchant, C | Viallet, F | Vidailhet, M | Tzourio, Christophe | Amouyel, Philippe | Loriot, Marie-Anne | Mutez, Eugénie | Duflot, Aurélie | Legendre, Jean-Philippe | Waucquier, Nawal | Gasser, Thomas | Riess, Olaf | Berg, Daniela | Schulte, Claudia | Klein, Christine | Djarmati, Ana | Hagenah, Johann | Lohmann, Katja | Auburger, Georg | Hilker, Rüdiger | van de Loo, Simone | Dardiotis, Efthimios | Tsimourtou, Vaia | Ralli, Styliani | Kountra, Persa | Patramani, Gianna | Vogiatzi, Cristina | Hattori, Nobutaka | Tomiyama, Hiroyuki | Funayama, Manabu | Yoshino, Hiroyo | Li, Yuanzhe | Imamichi, Yoko | Toda, Tatsushi | Satake, Wataru | Lynch, Tim | Gibson, J. Mark | Valente, Enza Maria | Ferraris, Alessandro | Dallapiccola, Bruno | Ialongo, Tamara | Brighina, Laura | Corradi, Barbara | Piolti, Roberto | Tarantino, Patrizia | Annesi, Ferdinanda | Jeon, Beom S. | Park, Sung-Sup | Aasly, J | Opala, Grzegorz | Jasinska-Myga, Barbara | Klodowska-Duda, Gabriela | Boczarska-Jedynak, Magdalena | Tan, Eng King | Belin, Andrea Carmine | Olson, Lars | Galter, Dagmar | Westerlund, Marie | Sydow, Olof | Nilsson, Christer | Puschmann, Andreas | Lin, JJ | Maraganore, Demetrius M. | Ahlskog, J, Eric | de Andrade, Mariza | Lesnick, Timothy G. | Rocca, Walter A. | Checkoway, Harvey | Ross, Owen A | Wszolek, Zbigniew K. | Uitti, Ryan J.
Neurology  2012;79(7):659-667.
Objective:
Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown.
Methods:
Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry.
Results:
In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78–0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14–1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I2 estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD.
Conclusion:
Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. Neurology® 2012;79:659–667
doi:10.1212/WNL.0b013e318264e353
PMCID: PMC3414661  PMID: 22786590
2.  Age-at-Onset in Late Onset Alzheimer Disease is Modified by Multiple Genetic Loci 
JAMA neurology  2014;71(11):1394-1404.
Importance
As APOE locus variants contribute to both risk of late-onset Alzheimer disease and differences in age-at-onset, it is important to know if other established late-onset Alzheimer disease risk loci also affect age-at-onset in cases.
Objectives
To investigate the effects of known Alzheimer disease risk loci in modifying age-at-onset, and to estimate their cumulative effect on age-at-onset variation, using data from genome-wide association studies in the Alzheimer’s Disease Genetics Consortium (ADGC).
Design, Setting and Participants
The ADGC comprises 14 case-control, prospective, and family-based datasets with data on 9,162 Caucasian participants with Alzheimer’s occurring after age 60 who also had complete age-at-onset information, gathered between 1989 and 2011 at multiple sites by participating studies. Data on genotyped or imputed single nucleotide polymorphisms (SNPs) most significantly associated with risk at ten confirmed LOAD loci were examined in linear modeling of AAO, and individual dataset results were combined using a random effects, inverse variance-weighted meta-analysis approach to determine if they contribute to variation in age-at-onset. Aggregate effects of all risk loci on AAO were examined in a burden analysis using genotype scores weighted by risk effect sizes.
Main Outcomes and Measures
Age at disease onset abstracted from medical records among participants with late-onset Alzheimer disease diagnosed per standard criteria.
Results
Analysis confirmed association of APOE with age-at-onset (rs6857, P=3.30×10−96), with associations in CR1 (rs6701713, P=7.17×10−4), BIN1 (rs7561528, P=4.78×10−4), and PICALM (rs561655, P=2.23×10−3) reaching statistical significance (P<0.005). Risk alleles individually reduced age-at-onset by 3-6 months. Burden analyses demonstrated that APOE contributes to 3.9% of variation in age-at-onset (R2=0.220) over baseline (R2=0.189) whereas the other nine loci together contribute to 1.1% of variation (R2=0.198).
Conclusions and Relevance
We confirmed association of APOE variants with age-at-onset among late-onset Alzheimer disease cases and observed novel associations with age-at-onset in CR1, BIN1, and PICALM. In contrast to earlier hypothetical modeling, we show that the combined effects of Alzheimer disease risk variants on age-at-onset are on the scale of, but do not exceed, the APOE effect. While the aggregate effects of risk loci on age-at-onset may be significant, additional genetic contributions to age-at-onset are individually likely to be small.
doi:10.1001/jamaneurol.2014.1491
PMCID: PMC4314944  PMID: 25199842
Alzheimer Disease; Alzheimer Disease Genetics; Alzheimer’s Disease - Pathophysiology; Genetics of Alzheimer Disease; Aging
3.  Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies 
Human molecular genetics  2014;23(23):6139-6146.
Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson’s and Alzheimer’s diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.
doi:10.1093/hmg/ddu334
PMCID: PMC4222357  PMID: 24973356
4.  Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease 
Neurology  2014;83(21):1906-1913.
Objectives:
The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO-PD) cohort.
Methods:
C9orf72 (G4C2)n repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia.
Results:
A pathogenic (G4C2)n>60 expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G4C2)n repeats; however, we could not detect a robust association between the C9orf72 (G4C2)n repeat and PD, and the population attributable risk was low.
Conclusions:
Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease.
doi:10.1212/WNL.0000000000001012
PMCID: PMC4248456  PMID: 25326098
5.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis 
Nature neuroscience  2014;17(5):664-666.
MATR3 is an RNA/DNA binding protein that interacts with TDP-43, a major disease protein linked to amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in the spinal cords of ALS cases with and without MATR3 mutations. Our data provide additional evidence supporting the role of aberrant RNA processing in motor neuron degeneration.
doi:10.1038/nn.3688
PMCID: PMC4000579  PMID: 24686783
6.  Rare coding variants in Phospholipase D3 (PLD3) confer risk for Alzheimer's disease 
Nature  2013;505(7484):550-554.
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1,2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low frequency coding variants with large effects on LOAD risk, we performed whole exome-sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large case-control datasets. A rare variant in PLD3 (phospholipase-D family, member 3, rs145999145; V232M) segregated with disease status in two independent families and doubled risk for AD in seven independent case-control series (V232M meta-analysis; OR= 2.10, CI=1.47-2.99; p= 2.93×10-5, 11,354 cases and controls of European-descent). Gene-based burden analyses in 4,387 cases and controls of European-descent and 302 African American cases and controls, with complete sequence data for PLD3, indicate that several variants in this gene increase risk for AD in both populations (EA: OR= 2.75, CI=2.05-3.68; p=1.44×10-11, AA: OR= 5.48, CI=1.77-16.92; p=1.40×10-3). PLD3 is highly expressed in brain regions vulnerable to AD pathology, including hippocampus and cortex, and is expressed at lower levels in neurons from AD brains compared to control brains (p=8.10×10-10). Over-expression of PLD3 leads to a significant decrease in intracellular APP and extracellular Aβ42 and Aβ40, while knock-down of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a two-fold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may be used to identify rare variants with large effects on risk for disease or other complex traits.
doi:10.1038/nature12825
PMCID: PMC4050701  PMID: 24336208
7.  Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies 
Human Molecular Genetics  2014;23(23):6139-6146.
Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson's and Alzheimer's diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.
doi:10.1093/hmg/ddu334
PMCID: PMC4222357  PMID: 24973356
8.  Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease 
Escott-Price, Valentina | Bellenguez, Céline | Wang, Li-San | Choi, Seung-Hoan | Harold, Denise | Jones, Lesley | Holmans, Peter | Gerrish, Amy | Vedernikov, Alexey | Richards, Alexander | DeStefano, Anita L. | Lambert, Jean-Charles | Ibrahim-Verbaas, Carla A. | Naj, Adam C. | Sims, Rebecca | Jun, Gyungah | Bis, Joshua C. | Beecham, Gary W. | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A. | Denning, Nicola | Smith, Albert V. | Chouraki, Vincent | Thomas, Charlene | Ikram, M. Arfan | Zelenika, Diana | Vardarajan, Badri N. | Kamatani, Yoichiro | Lin, Chiao-Feng | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L. | Vronskaya, Maria | Johnson, Andrew D. | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Hanon, Olivier | Fitzpatrick, Annette L. | Buxbaum, Joseph D. | Campion, Dominique | Crane, Paul K. | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L. | De Jager, Philip L. | Deramecourt, Vincent | Johnston, Janet A. | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Hernández, Isabel | Rubinsztein, David C. | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M. | Fiévet, Nathalie | Huentelman, Matthew J. | Gill, Michael | Brown, Kristelle | Kamboh, M. Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B. | Myers, Amanda J. | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | George-Hyslop, Peter St | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W. | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petra | Collinge, John | Sorbi, Sandro | Garcia, Florentino Sanchez | Fox, Nick C. | Hardy, John | Naranjo, Maria Candida Deniz | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Scarpini, Elio | Bonuccelli, Ubaldo | Mancuso, Michelangelo | Siciliano, Gabriele | Moebus, Susanne | Mecocci, Patrizia | Zompo, Maria Del | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Frank-García, Ana | Panza, Francesco | Solfrizzi, Vincenzo | Caffarra, Paolo | Nacmias, Benedetta | Perry, William | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M. | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G. | Coto, Eliecer | Hamilton-Nelson, Kara L. | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J. | Faber, Kelley M. | Jonsson, Palmi V. | Combarros, Onofre | O'Donovan, Michael C. | Cantwell, Laura B. | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H. | Bennett, David A. | Harris, Tamara B. | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F. A. G. | Passmore, Peter | Montine, Thomas J. | Bettens, Karolien | Rotter, Jerome I. | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M. | Kukull, Walter A. | Hannequin, Didier | Powell, John F. | Nalls, Michael A. | Ritchie, Karen | Lunetta, Kathryn L. | Kauwe, John S. K. | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R. | Schmidt, Reinhold | Rujescu, Dan | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M. | Graff, Caroline | Psaty, Bruce M. | Haines, Jonathan L. | Lathrop, Mark | Pericak-Vance, Margaret A. | Launer, Lenore J. | Van Broeckhoven, Christine | Farrer, Lindsay A. | van Duijn, Cornelia M. | Ramirez, Alfredo | Seshadri, Sudha | Schellenberg, Gerard D. | Amouyel, Philippe | Williams, Julie
PLoS ONE  2014;9(6):e94661.
Background
Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.
Principal Findings
In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10−6) and 14 (IGHV1-67 p = 7.9×10−8) which indexed novel susceptibility loci.
Significance
The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
doi:10.1371/journal.pone.0094661
PMCID: PMC4055488  PMID: 24922517
9.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease 
Lambert, Jean-Charles | Ibrahim-Verbaas, Carla A | Harold, Denise | Naj, Adam C | Sims, Rebecca | Bellenguez, Céline | Jun, Gyungah | DeStefano, Anita L | Bis, Joshua C | Beecham, Gary W | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A | Jones, Nicola | Smith, Albert V | Chouraki, Vincent | Thomas, Charlene | Ikram, M Arfan | Zelenika, Diana | Vardarajan, Badri N | Kamatani, Yoichiro | Lin, Chiao-Feng | Gerrish, Amy | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Choi, Seung-Hoan | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Ramirez, Alfredo | Hanon, Olivier | Fitzpatrick, Annette L | Buxbaum, Joseph D | Campion, Dominique | Crane, Paul K | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L | De Jager, Philip L | Deramecourt, Vincent | Johnston, Janet A | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Morón, Francisco J | Rubinsztein, David C | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M | Fiévet, Nathalie | Huentelman, Matthew J | Gill, Michael | Brown, Kristelle | Kamboh, M Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B | Green, Robert | Myers, Amanda J | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | St George-Hyslop, Peter | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petroula | Collinge, John | Sorbi, Sandro | Sanchez-Garcia, Florentino | Fox, Nick C | Hardy, John | Deniz Naranjo, Maria Candida | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Mancuso, Michelangelo | Matthews, Fiona | Moebus, Susanne | Mecocci, Patrizia | Zompo, Maria Del | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Bullido, Maria | Panza, Francesco | Caffarra, Paolo | Nacmias, Benedetta | Gilbert, John R | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G | Coto, Eliecer | Hamilton-Nelson, Kara L | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J | Faber, Kelley M | Jonsson, Palmi V | Combarros, Onofre | O’Donovan, Michael C | Cantwell, Laura B | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H | Bennett, David A | Harris, Tamara B | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F A G | Passmore, Peter | Montine, Thomas J | Bettens, Karolien | Rotter, Jerome I | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M | Kukull, Walter A | Hannequin, Didier | Powell, John F | Nalls, Michael A | Ritchie, Karen | Lunetta, Kathryn L | Kauwe, John S K | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R | Schmidt, Reinhold | Rujescu, Dan | Wang, Li-san | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M | Graff, Caroline | Psaty, Bruce M | Jones, Lesley | Haines, Jonathan L | Holmans, Peter A | Lathrop, Mark | Pericak-Vance, Margaret A | Launer, Lenore J | Farrer, Lindsay A | van Duijn, Cornelia M | Van Broeckhoven, Christine | Moskvina, Valentina | Seshadri, Sudha | Williams, Julie | Schellenberg, Gerard D | Amouyel, Philippe
Nature genetics  2013;45(12):1452-1458.
Eleven susceptibility loci for late-onset Alzheimer’s disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls. In stage 2,11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer’s disease.
doi:10.1038/ng.2802
PMCID: PMC3896259  PMID: 24162737
10.  Investigation of C9orf72 in 4 Neurodegenerative Disorders 
Archives of neurology  2012;69(12):1583-1590.
Objective
To estimate the allele frequency of C9orf72 (G4C2) repeats in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer disease (AD), and Parkinson disease (PD).
Design
The number of repeats was estimated by a 2-step genotyping strategy. For expansion carriers, we sequenced the repeat flanking regions and obtained APOE genotypes and MAPT H1/H2 haplotypes.
Setting
Hospitals specializing in neurodegenerative disorders.
Subjects
We analyzed 520 patients with FTLD, 389 patients with ALS, 424 patients with AD, 289 patients with PD, 602 controls, 18 families, and 29 patients with PD with the LRRK2 G2019S mutation.
Main Outcome Measure
The expansion frequency.
Results
Based on a prior cutoff (>30 repeats), the expansion was detected in 9.3% of patients with ALS, 5.2% of patients with FTLD, and 0.7% of patients with PD but not in controls or patients with AD. It was significantly associated with family history of ALS or FTLD and age at onset of FTLD. Phenotype variation (ALS vs FTLD) was not associated with MAPT, APOE, or variability in the repeat flanking regions. Two patients with PD were carriers of 39 and 32 repeats with questionable pathological significance, since the 39-repeat allele does not segregate with PD. No expansion or intermediate alleles (20–29 repeats) were found among the G2019S carriers and AD cases with TAR DNA-binding protein 43–positive inclusions. Surprisingly, the frequency of the 10-repeat allele was marginally increased in all 4 neurodegenerative diseases compared with controls, indicating the presence of an unknown risk variation in the C9orf72 locus.
Conclusions
The C9orf72 expansion is a common cause of ALS and FTLD, but not of AD or PD. Our study raises concern about a reliable cutoff for the pathological repeat number, which is important in the utility of genetic screening.
doi:10.1001/archneurol.2012.2016
PMCID: PMC4005900  PMID: 22964832
11.  Evidence of Recessive Alzheimer Disease Loci in a Caribbean Hispanic Data Set 
JAMA neurology  2013;70(10):1261-1267.
IMPORTANCE
The search for novel Alzheimer disease (AD) genes or pathologic mutations within known AD loci is ongoing. The development of array technologies has helped to identify rare recessive mutations among long runs of homozygosity (ROHs), in which both parental alleles are identical. Caribbean Hispanics are known to have an elevated risk for AD and tend to have large families with evidence of inbreeding.
OBJECTIVE
To test the hypothesis that the late-onset AD in a Caribbean Hispanic population might be explained in part by the homozygosity of unknown loci that could harbor recessive AD risk haplotypes or pathologic mutations.
DESIGN
We used genome-wide array data to identify ROHs (>1 megabase) and conducted global burden and locus-specific ROH analyses.
SETTING
A whole-genome case-control ROH study.
PARTICIPANTS
A Caribbean Hispanic data set of 547 unrelated cases (48.8% with familial AD) and 542 controls collected from a population known to have a 3-fold higher risk of AD vs non-Hispanics in the same community. Based on a Structure program analysis, our data set consisted of African Hispanic (207 cases and 192 controls) and European Hispanic (329 cases and 326 controls) participants.
EXPOSURE
Alzheimer disease risk genes.
MAIN OUTCOMES AND MEASURES
We calculated the total and mean lengths of the ROHs per sample. Global burden measurements among autosomal chromosomes were investigated in cases vs controls. Pools of overlapping ROH segments (consensus regions) were identified, and the case to control ratio was calculated for each consensus region. We formulated the tested hypothesis before data collection.
RESULTS
In total, we identified 17 137 autosomal regions with ROHs. The mean length of the ROH per person was significantly greater in cases vs controls (P = .0039), and this association was stronger with familial AD (P = .0005). Among the European Hispanics, a consensus region at the EXOC4 locus was significantly associated with AD even after correction for multiple testing (empirical P value 1 [EMP1], .0001; EMP2, .002; 21 AD cases vs 2 controls). Among the African Hispanic subset, the most significant but nominal association was observed for CTNNA3, a well-known AD gene candidate (EMP1, .002; 10 AD cases vs 0 controls).
CONCLUSIONS AND RELEVANCE
Our results show that ROHs could significantly contribute to the etiology of AD. Future studies would require the analysis of larger, relatively inbred data sets that might reveal novel recessive AD genes. The next step is to conduct sequencing of top significant loci in a subset of samples with overlapping ROHs.
doi:10.1001/jamaneurol.2013.3545
PMCID: PMC3991012  PMID: 23978990
12.  A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies 
JAMA neurology  2013;70(6):10.1001/jamaneurol.2013.1925.
Importance
While mutations in glucocerebrosidase (GBA1) are associated with an increased risk for Parkinson disease (PD), it is important to establish whether such mutations are also a common risk factor for other Lewy body disorders.
Objective
To establish whether GBA1 mutations are a risk factor for dementia with Lewy bodies (DLB).
Design
We compared genotype data on patients and controls from 11 centers. Data concerning demographics, age at onset, disease duration, and clinical and pathological features were collected when available. We conducted pooled analyses using logistic regression to investigate GBA1 mutation carrier status as predicting DLB or PD with dementia status, using common control subjects as a reference group. Random-effects meta-analyses were conducted to account for additional heterogeneity.
Setting
Eleven centers from sites around the world performing genotyping.
Participants
Seven hundred twenty-one cases met diagnostic criteria for DLB and 151 had PD with dementia. We compared these cases with 1962 controls from the same centers matched for age, sex, and ethnicity.
Main Outcome Measures
Frequency of GBA1 mutations in cases and controls.
Results
We found a significant association between GBA1 mutation carrier status and DLB, with an odds ratio of 8.28 (95% CI, 4.78–14.88). The odds ratio for PD with dementia was 6.48 (95% CI, 2.53–15.37). The mean age at diagnosis of DLB was earlier in GBA1 mutation carriers than in noncarriers (63.5 vs 68.9 years; P<.001), with higher disease severity scores.
Conclusions and Relevance
Mutations in GBA1 are a significant risk factor for DLB. GBA1 mutations likely play an even larger role in the genetic etiology of DLB than in PD, providing insight into the role of glucocerebrosidase in Lewy body disease.
doi:10.1001/jamaneurol.2013.1925
PMCID: PMC3841974  PMID: 23588557
13.  TREM2 Variants in Alzheimer's Disease 
The New England journal of medicine  2012;368(2):117-127.
BACKGROUND
Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia.
METHODS
We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice.
RESULTS
We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease.
CONCLUSIONS
Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.)
doi:10.1056/NEJMoa1211851
PMCID: PMC3631573  PMID: 23150934
14.  SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis 
Neurology  2012;79(15):1556-1562.
Objective:
There is increasing evidence that common genetic risk factors underlie frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Recently, mutations in the sequestosome 1 (SQSTM1) gene, which encodes p62 protein, have been reported in patients with ALS. P62 is a multifunctional adapter protein mainly involved in selective autophagy, oxidative stress response, and cell signaling pathways. The purpose of our study was to evaluate the frequency of SQSTM1 mutations in a dataset of unrelated patients with FTLD or ALS, in comparison with healthy controls and patients with Paget disease of bone (PDB).
Methods:
Promoter region and all exons of SQSTM1 were sequenced in a large group of subjects, including patients with FTLD or ALS, healthy controls, and patients with PDB. The clinical characteristics of patients with FTLD or ALS with gene mutations were examined.
Results:
We identified 6 missense mutations in the coding region of SQSTM1 in patients with either FTLD or ALS, none of which were found in healthy controls or patients with PDB. In silico analysis suggested a pathogenetic role for these mutations. Furthermore, 7 novel noncoding SQSTM1 variants were found in patients with FTLD and patients with ALS, including 4 variations in the promoter region.
Conclusions:
SQSTM1 mutations are present in patients with FTLD and patients with ALS. Additional studies are warranted in order to better investigate the role of p62 in the pathogenesis of both FTLD and ALS.
doi:10.1212/WNL.0b013e31826e25df
PMCID: PMC3655323  PMID: 22972638
15.  Role of p73 in Alzheimer disease: lack of association in mouse models or in human cohorts 
Background
P73 belongs to the p53 family of cell survival regulators with the corresponding locus Trp73 producing the N-terminally distinct isoforms, TAp73 and DeltaNp73. Recently, two studies have implicated the murine Trp73 in the modulation in phospho-tau accumulation in aged wild type mice and in young mice modeling Alzheimer’s disease (AD) suggesting that Trp73, particularly the DeltaNp73 isoform, links the accumulation of amyloid peptides to the creation of neurofibrillary tangles (NFTs). Here, we reevaluated tau pathologies in the same TgCRND8 mouse model as the previous studies.
Results
Despite the use of the same animal models, our in vivo studies failed to demonstrate biochemical or histological evidence for misprocessing of tau in young compound Trp73+/- + TgCRND8 mice or in aged Trp73+/- mice analyzed at the ages reported previously, or older. Secondly, we analyzed an additional mouse model where the DeltaNp73 was specifically deleted and confirmed a lack of impact of the DeltaNp73 allele, either in heterozygous or homozygous form, upon tau pathology in aged mice. Lastly, we also examined human TP73 for single nucleotide polymorphisms (SNPs) and/or copy number variants in a meta-analysis of 10 AD genome-wide association datasets. No SNPs reached significance after correction for multiple testing and no duplications/deletions in TP73 were found in 549 cases of AD and 544 non-demented controls.
Conclusion
Our results fail to support P73 as a contributor to AD pathogenesis.
doi:10.1186/1750-1326-8-10
PMCID: PMC3614544  PMID: 23414597
P73; Alzheimer’s disease; Animal models; GWAS
16.  Replication of the association between variants in the IDE-KIF11-HHEX harboring region on chromosome 10q and plasma amyloid β levels in Alzheimer’s disease 
Neurobiology of aging  2010;33(1):199.e13-199.e17.
Background and Objective
Genetic linkage and association studies in late-onset Alzheimer’s disease (LOAD) or LOAD endophenotypes have pointed to several candidate regions on chromosome 10q, among these the ~250kb LD block harboring the three genes IDE, KIF11 and HHEX. We explored the association between variants in the genomic region harboring the IDE-KIF11-HHEX complex with plasma Aβ40 and Aβ42 levels in a case-control cohort of Caribbean Hispanics.
Methods
First, we performed single marker multivariate linear regression analysis relating the individual SNPs with plasma Aβ40 and Aβ42 levels. Then we performed 3-SNP sliding window haplotype analyses, correcting all analyses for multiple testing
Results
Out of 32 SNPs in this region, three SNPs in IDE (rs2421943, rs12264682, rs11187060) were significantly associated with plasma Aß40 or Aß42 levels in single marker and haplotype analyses after correction for multiple testing. As described above, all these SNPs lie within the same linkage disequilibrium block, and are in linkage disequilibrium with the previously reported haplotypes.
Conclusion
Our findings provide modest support for an association in the IDE harboring region on chromosome 10q with Aβ 40 and 42 levels.
doi:10.1016/j.neurobiolaging.2010.07.005
PMCID: PMC3117070  PMID: 20724036
amyloid beta; Alzheimer’s disease; genetics; insulin-degrading enzyme
17.  A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants 
Journal of Medical Genetics  2012;49(11):721-726.
Background
Two recent studies identified a mutation (p.Asp620Asn) in the vacuolar protein sorting 35 gene as a cause for an autosomal dominant form of Parkinson disease . Although additional missense variants were described, their pathogenic role yet remains inconclusive.
Methods and results
We performed the largest multi-center study to ascertain the frequency and pathogenicity of the reported vacuolar protein sorting 35 gene variants in more than 15,000 individuals worldwide. p.Asp620Asn was detected in 5 familial and 2 sporadic PD cases and not in healthy controls, p.Leu774Met in 6 cases and 1 control, p.Gly51Ser in 3 cases and 2 controls. Overall analyses did not reveal any significant increased risk for p.Leu774Met and p.Gly51Ser in our cohort.
Conclusions
Our study apart from identifying the p.Asp620Asn variant in familial cases also identified it in idiopathic Parkinson disease cases, and thus provides genetic evidence for a role of p.Asp620Asn in Parkinson disease in different populations worldwide.
doi:10.1136/jmedgenet-2012-101155
PMCID: PMC3488700  PMID: 23125461
Parkinson-s disease; Genome-wide; Genetics; Genetic epidemiology; Complex traits
18.  A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD 
Renton, Alan E. | Majounie, Elisa | Waite, Adrian | Simón-Sánchez, Javier | Rollinson, Sara | Gibbs, J. Raphael | Schymick, Jennifer C. | Laaksovirta, Hannu | van Swieten, John C. | Myllykangas, Liisa | Kalimo, Hannu | Paetau, Anders | Abramzon, Yevgeniya | Remes, Anne M. | Kaganovich, Alice | Scholz, Sonja W. | Duckworth, Jamie | Ding, Jinhui | Harmer, Daniel W. | Hernandez, Dena G. | Johnson, Janel O. | Mok, Kin | Ryten, Mina | Trabzuni, Danyah | Guerreiro, Rita J. | Orrell, Richard W. | Neal, James | Murray, Alex | Pearson, Justin | Jansen, Iris E. | Sondervan, David | Seelaar, Harro | Blake, Derek | Young, Kate | Halliwell, Nicola | Callister, Janis | Toulson, Greg | Richardson, Anna | Gerhard, Alex | Snowden, Julie | Mann, David | Neary, David | Nalls, Michael A. | Peuralinna, Terhi | Jansson, Lilja | Isoviita, Veli-Matti | Kaivorinne, Anna-Lotta | Hölttä-Vuori, Maarit | Ikonen, Elina | Sulkava, Raimo | Benatar, Michael | Wuu, Joanne | Chiò, Adriano | Restagno, Gabriella | Borghero, Giuseppe | Sabatelli, Mario | Heckerman, David | Rogaeva, Ekaterina | Zinman, Lorne | Rothstein, Jeffrey | Sendtner, Michael | Drepper, Carsten | Eichler, Evan E. | Alkan, Can | Abdullaev, Zied | Pack, Svetlana D. | Dutra, Amalia | Pak, Evgenia | Hardy, John | Singleton, Andrew | Williams, Nigel M. | Heutink, Peter | Pickering-Brown, Stuart | Morris, Huw R. | Tienari, Pentti J. | Traynor, Bryan J.
Neuron  2011;72(2):257-268.
The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one third of familial ALS cases of outbred European descent making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.
doi:10.1016/j.neuron.2011.09.010
PMCID: PMC3200438  PMID: 21944779
19.  Identification of Novel Loci for Alzheimer Disease and Replication of CLU, PICALM, and BIN1 in Caribbean Hispanic Individuals 
Archives of Neurology  2010;68(3):320-328.
Objectives
To identify novel loci for late-onset Alzheimer disease (LOAD) in Caribbean Hispanic individuals and to replicate the findings in a publicly available data set from the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study.
Design
Nested case-control genome-wide association study.
Setting
The Washington Heights–Inwood Columbia Aging Project and the Estudio Familiar de Influencia Genetica de Alzheimer study.
Participants
Five hundred forty-nine affected and 544 unaffected individuals of Caribbean Hispanic ancestry.
Intervention
The Illumina HumanHap 650Y chip for genotyping.
Main Outcome Measure
Clinical diagnosis or pathologically confirmed diagnosis of LOAD.
Results
The strongest support for allelic association was for rs9945493 on 18q23 (P=1.7 × 10−7), but 22 additional single-nucleotide polymorphisms (SNPs) had a P value less than 9 × 10−6 under 3 different analyses: unadjusted and stratified by the presence or absence of the APOE ε4 allele. Of these SNPs, 5 SNPs (rs4669573 and rs10197851 on 2p25.1; rs11711889 on 3q25.2; rs1117750 on 7p21.1; and rs7908652 on 10q23.1) were associated with LOAD in an independent cohort from the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study. We also replicated genetic associations for CLU, PICALM, and BIN1.
Conclusions
Our genome-wide search of Caribbean Hispanic individuals identified several novel genetic variants associated with LOAD and replicated these associations in a white cohort. We also replicated associations in CLU, PICALM, and BIN1 in the Caribbean Hispanic cohort.
doi:10.1001/archneurol.2010.292
PMCID: PMC3268783  PMID: 21059989
20.  Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk 
Background
We have followed-up on the recent genome-wide association (GWA) of the clusterin gene (CLU) with increased risk for Alzheimer disease (AD), by performing an unbiased resequencing of all CLU coding exons and regulatory regions in an extended Flanders-Belgian cohort of Caucasian AD patients and control individuals (n = 1930). Moreover, we have replicated genetic findings by targeted resequencing in independent Caucasian cohorts of French (n = 2182) and Canadian (n = 573) origin and by performing meta-analysis combining our data with previous genetic CLU screenings.
Results
In the Flanders-Belgian cohort, we identified significant clustering in exons 5-8 of rare genetic variations leading to non-synonymous substitutions and a 9-bp insertion/deletion affecting the CLU β-chain (p = 0.02). Replicating this observation by targeted resequencing of CLU exons 5-8 in 2 independent Caucasian cohorts of French and Canadian origin identified identical as well as novel non-synonymous substitutions and small insertion/deletions. A meta-analysis, combining the datasets of the 3 cohorts with published CLU sequencing data, confirmed that rare coding variations in the CLU β-chain were significantly enriched in AD patients (ORMH = 1.96 [95% CI = 1.18-3.25]; p = 0.009). Single nucleotide polymorphisms (SNPs) association analysis indicated the common AD risk association (GWA SNP rs11136000, p = 0.013) in the 3 combined datasets could not be explained by the presence of the rare coding variations we identified. Further, high-density SNP mapping in the CLU locus mapped the common association signal to a more 5' CLU region.
Conclusions
We identified a new genetic risk association of AD with rare coding CLU variations that is independent of the 5' common association signal identified in the GWA studies. At this stage the role of these coding variations and their likely effect on the β-chain domain and CLU protein functioning remains unclear and requires further studies.
doi:10.1186/1750-1326-7-3
PMCID: PMC3296573  PMID: 22248099
Alzheimer disease; clusterin gene (CLU); genomic resequencing; non-synonymous substitutions; insertions/deletions; β-chain domain; meta-analysis
21.  SORCS1 Alters Amyloid Precursor Protein Processing and Variants May Increase Alzheimer’s Disease Risk 
Annals of neurology  2011;69(1):47-64.
Objective
Sorting mechanisms that cause the amyloid precursor protein (APP) and the β-secretases and γ-secretases to colocalize in the same compartment play an important role in the regulation of Aβ production in Alzheimer’s disease (AD). We and others have reported that genetic variants in the Sortilin-related receptor (SORL1) increased the risk of AD, that SORL1 is involved in trafficking of APP, and that under expression of SORL1 leads to overproduction of Aβ. Here we explored the role of one of its homologs, the sortilin-related VPS10 domain containing receptor 1 (SORCS1), in AD.
Methods
We analyzed the genetic associations between AD and 16 SORCS1–single nucleotide polymorphisms (SNPs) in 6 independent data sets (2,809 cases and 3,482 controls). In addition, we compared SorCS1 expression levels of affected and unaffected brain regions in AD and control brains in microarray gene expression and real-time polymerase chain reaction (RT-PCR) sets, explored the effects of significant SORCS1-SNPs on SorCS1 brain expression levels, and explored the effect of suppression and overexpression of the common SorCS1 isoforms on APP processing and Aβ generation.
Results
Inherited variants in SORCS1 were associated with AD in all datasets (0.001 < p < 0.049). In addition, SorCS1 influenced APP processing. While overexpression of SorCS1 reduced γ-secretase activity and Aβ levels, the suppression of SorCS1 increased γ-secretase processing of APP and the levels of Aβ.
Interpretations
These data suggest that inherited or acquired changes in SORCS1 expression or function may play a role in the pathogenesis of AD.
doi:10.1002/ana.22308
PMCID: PMC3086759  PMID: 21280075
22.  Genome-Wide Survey of Large Rare Copy Number Variants in Alzheimer’s Disease Among Caribbean Hispanics 
G3: Genes|Genomes|Genetics  2012;2(1):71-78.
Recently genome-wide association studies have identified significant association between Alzheimer’s disease (AD) and variations in CLU, PICALM, BIN1, CR1, MS4A4/MS4A6E, CD2AP, CD33, EPHA1, and ABCA7. However, the pathogenic variants in these loci have not yet been found. We conducted a genome-wide scan for large copy number variation (CNV) in a dataset of Caribbean Hispanic origin (554 controls and 559 AD cases that were previously investigated in a SNP-based genome-wide association study using Illumina HumanHap 650Y platform). We ran four CNV calling algorithms to obtain high-confidence calls for large CNVs (>100 kb) that were detected by at least two algorithms. Global burden analyses did not reveal significant differences between cases and controls in CNV rate, distribution of deletions or duplications, total or average CNV size; or number of genes affected by CNVs. However, we observed a nominal association between AD and a ∼470 kb duplication on chromosome 15q11.2 (P = 0.037). This duplication, encompassing up to five genes (TUBGCP5, CYFIP1, NIPA2, NIPA1, and WHAMML1) was present in 10 cases (2.6%) and 3 controls (0.8%). The dosage increase of CYFIP1 and NIPA1 genes was further confirmed by quantitative PCR. The current study did not detect CNVs that affect novel AD loci identified by recent genome-wide association studies. However, because the array technology used in our study has limitations in detecting small CNVs, future studies must carefully assess novel AD genes for the presence of disease-related CNVs.
doi:10.1534/g3.111.000869
PMCID: PMC3276183  PMID: 22384383
gene; deletion; duplication; Alzheimer’s Disease; copy number variants
23.  Meta-Analysis confirms CR1, CLU, and PICALM as Alzheimer’s disease risk loci and reveals interactions with APOE genotypes 
Archives of neurology  2010;67(12):1473-1484.
Objectives
To determine whether genotypes at CLU, PICALM, and CR1 confer risk for Alzheimer’s disease (AD) and whether risk for AD associated with these genes is influenced by APOE genotypes.
Design
Association study of AD and CLU, PICALM, CR1 and APOE genotypes.
Setting
Academic research institutions in the United States, Canada, and Israel.
Participants
7,070 AD cases, 3,055 with autopsies, and 8,169 elderly cognitively normal controls, 1,092 with autopsies from 12 different studies, including Caucasians, African Americans, Israeli-Arabs, and Caribbean Hispanics.
Results
Unadjusted, CLU [odds ratio (OR) = 0.91, 95% confidence interval (CI) = 0.85 – 0.96 for single nucleotide polymorphism (SNP) rs11136000], CR1 (OR = 1.14, CI = 1.07 – 1.22, SNP rs3818361), and PICALM (OR = 0.89, CI = 0.84 – 0.94, SNP rs3851179) were associated with AD in Caucasians. None were significantly associated with AD in the other ethnic groups. APOE ε4 was significantly associated with AD (ORs from 1.80 to 9.05) in all but one small Caucasian cohort and in the Arab cohort. Adjusting for age, sex, and the presence of at least one APOE ε4 allele greatly reduced evidence for association with PICALM but not CR1 or CLU. Models with the main SNP effect, APOE ε4 (+/−), and an interaction term showed significant interaction between APOE ε4 (+/−) and PICALM.
Conclusions
We confirm in a completely independent dataset that CR1, CLU, and PICALM are AD susceptibility loci in European ancestry populations. Genotypes at PICALM confer risk predominantly in APOE ε4-positive subject. Thus, APOE and PICALM synergistically interact.
doi:10.1001/archneurol.2010.201
PMCID: PMC3048805  PMID: 20697030
24.  Common variants in MS4A4/MS4A6E, CD2uAP, CD33, and EPHA1 are associated with late-onset Alzheimer’s disease 
Naj, Adam C | Jun, Gyungah | Beecham, Gary W | Wang, Li-San | Vardarajan, Badri Narayan | Buros, Jacqueline | Gallins, Paul J | Buxbaum, Joseph D | Jarvik, Gail P | Crane, Paul K | Larson, Eric B | Bird, Thomas D | Boeve, Bradley F | Graff-Radford, Neill R | De Jager, Philip L | Evans, Denis | Schneider, Julie A | Carrasquillo, Minerva M | Ertekin-Taner, Nilufer | Younkin, Steven G | Cruchaga, Carlos | Kauwe, John SK | Nowotny, Petra | Kramer, Patricia | Hardy, John | Huentelman, Matthew J | Myers, Amanda J | Barmada, Michael M | Demirci, F. Yesim | Baldwin, Clinton T | Green, Robert C | Rogaeva, Ekaterina | St George-Hyslop, Peter | Arnold, Steven E | Barber, Robert | Beach, Thomas | Bigio, Eileen H | Bowen, James D | Boxer, Adam | Burke, James R | Cairns, Nigel J | Carlson, Chris S | Carney, Regina M | Carroll, Steven L | Chui, Helena C | Clark, David G | Corneveaux, Jason | Cotman, Carl W | Cummings, Jeffrey L | DeCarli, Charles | DeKosky, Steven T | Diaz-Arrastia, Ramon | Dick, Malcolm | Dickson, Dennis W | Ellis, William G | Faber, Kelley M | Fallon, Kenneth B | Farlow, Martin R | Ferris, Steven | Frosch, Matthew P | Galasko, Douglas R | Ganguli, Mary | Gearing, Marla | Geschwind, Daniel H | Ghetti, Bernardino | Gilbert, John R | Gilman, Sid | Giordani, Bruno | Glass, Jonathan D | Growdon, John H | Hamilton, Ronald L | Harrell, Lindy E | Head, Elizabeth | Honig, Lawrence S | Hulette, Christine M | Hyman, Bradley T | Jicha, Gregory A | Jin, Lee-Way | Johnson, Nancy | Karlawish, Jason | Karydas, Anna | Kaye, Jeffrey A | Kim, Ronald | Koo, Edward H | Kowall, Neil W | Lah, James J | Levey, Allan I | Lieberman, Andrew P | Lopez, Oscar L | Mack, Wendy J | Marson, Daniel C | Martiniuk, Frank | Mash, Deborah C | Masliah, Eliezer | McCormick, Wayne C | McCurry, Susan M | McDavid, Andrew N | McKee, Ann C | Mesulam, Marsel | Miller, Bruce L | Miller, Carol A | Miller, Joshua W | Parisi, Joseph E | Perl, Daniel P | Peskind, Elaine | Petersen, Ronald C | Poon, Wayne W | Quinn, Joseph F | Rajbhandary, Ruchita A | Raskind, Murray | Reisberg, Barry | Ringman, John M | Roberson, Erik D | Rosenberg, Roger N | Sano, Mary | Schneider, Lon S | Seeley, William | Shelanski, Michael L | Slifer, Michael A | Smith, Charles D | Sonnen, Joshua A | Spina, Salvatore | Stern, Robert A | Tanzi, Rudolph E | Trojanowski, John Q | Troncoso, Juan C | Deerlin, Vivianna M Van | Vinters, Harry V | Vonsattel, Jean Paul | Weintraub, Sandra | Welsh-Bohmer, Kathleen A | Williamson, Jennifer | Woltjer, Randall L | Cantwell, Laura B | Dombroski, Beth A | Beekly, Duane | Lunetta, Kathryn L | Martin, Eden R | Kamboh, M. Ilyas | Saykin, Andrew J | Reiman, Eric M | Bennett, David A | Morris, John C | Montine, Thomas J | Goate, Alison M | Blacker, Deborah | Tsuang, Debby W | Hakonarson, Hakon | Kukull, Walter A | Foroud, Tatiana M | Haines, Jonathan L | Mayeux, Richard | Pericak-Vance, Margaret A | Farrer, Lindsay A | Schellenberg, Gerard D
Nature genetics  2011;43(5):436-441.
The Alzheimer Disease Genetics Consortium (ADGC) performed a genome-wide association study (GWAS) of late-onset Alzheimer disease (LOAD) using a 3 stage design consisting of a discovery stage (Stage 1) and two replication stages (Stages 2 and 3). Both joint and meta-analysis analysis approaches were used. We obtained genome-wide significant results at MS4A4A [rs4938933; Stages 1+2, meta-analysis (PM) = 1.7 × 10−9, joint analysis (PJ) = 1.7 × 10−9; Stages 1–3, PM = 8.2 × 10−12], CD2AP (rs9349407; Stages 1–3, PM = 8.6 × 10−9), EPHA1 (rs11767557; Stages 1–3 PM = 6.0 × 10−10), and CD33 (rs3865444; Stages 1–3, PM = 1.6 × 10−9). We confirmed that CR1 (rs6701713; PM = 4.6×10−10, PJ = 5.2×10−11), CLU (rs1532278; PM = 8.3 × 10−8, PJ = 1.9×10−8), BIN1 (rs7561528; PM = 4.0×10−14; PJ = 5.2×10−14), and PICALM (rs561655; PM = 7.0 × 10−11, PJ = 1.0×10−10) but not EXOC3L2 are LOAD risk loci1–3.
doi:10.1038/ng.801
PMCID: PMC3090745  PMID: 21460841

Results 1-25 (37)