PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Phenoxybenzamine Is Neuroprotective in a Rat Model of Severe Traumatic Brain Injury 
Phenoxybenzamine (PBZ) is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI). While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD). Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 μM–1 mM) and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1β, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI.
doi:10.3390/ijms15011402
PMCID: PMC3907876  PMID: 24447929
phenoxybenzamine; traumatic brain injury; neuroprotection; morris water maze
2.  INCREASED NADPH OXIDASE DERIVED SUPEROXIDE IS INVOLVED IN THE NEURONAL CELL DEATH INDUCED BY HYPOXIA ISCHEMIA IN NEONATAL HIPPOCAMPAL SLICE CULTURES 
Free radical biology & medicine  2012;53(5):1139-1151.
Neonatal brain hypoxia ischemia (HI) results in neuronal cell death. Previous studies indicate that reactive oxygen species (ROS) such as superoxide, play a key role in this process. However, the cellular sources have not been established. In this study we examined the role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex in neonatal HI brain injury and elucidated its mechanism of activation. Rat hippocampal slices were exposed to oxygen glucose deprivation (OGD) to mimic the conditions seen in HI. Initial studies confirmed an important role for NADPH oxidase derived superoxide in the oxidative stress associated with OGD. Further, the OGD-mediated increase in apoptotic cell death was inhibited by the NADPH oxidase inhibitor, apocynin. The activation of NADPH oxidase was found to be dependent on the p38 mitogen-activated protein kinase mediated phosphorylation and activation of the p47phox subunit. Using an adeno-associated virus antisense construct to selectively decrease p47phox expression in neurons, and showed that this lead to inhibition both of the increase in superoxide and neuronal cell death associated with OGD. We also found that NADPH oxidase inhibition in a neonatal rat model of HI or scavenging hydrogen peroxide (H2O2) reduced brain injury. Thus, we conclude that activation of the NADPH oxidase complex contributes to the oxidative stress during HI and that therapies targeted against this complex could exhibit neuroprotection against the brain injury associated with neonatal HI.
doi:10.1016/j.freeradbiomed.2012.06.012
PMCID: PMC3527086  PMID: 22728269
Hypoxia-ischemia; neuronal cell death; apoptosis; superoxide; Hydrogen peroxide; NADPH oxidase; p47phox; p38MAP kinase; neonatal brain
3.  MRI of Neuronal Recovery after Low-Dose Methamphetamine Treatment of Traumatic Brain Injury in Rats 
PLoS ONE  2013;8(4):e61241.
We assessed the effects of low dose methamphetamine treatment of traumatic brain injury (TBI) in rats by employing MRI, immunohistology, and neurological functional tests. Young male Wistar rats were subjected to TBI using the controlled cortical impact model. The treated rats (n = 10) received an intravenous (iv) bolus dose of 0.42 mg/kg of methamphetamine at eight hours after the TBI followed by continuous iv infusion for 24 hrs. The control rats (n = 10) received the same volume of saline using the same protocol. MRI scans, including T2-weighted imaging (T2WI) and diffusion tensor imaging (DTI), were performed one day prior to TBI, and at 1 and 3 days post TBI, and then weekly for 6 weeks. The lesion volumes of TBI damaged cerebral tissue were demarcated by elevated values in T2 maps and were histologically identified by hematoxylin and eosin (H&E) staining. The fractional anisotropy (FA) values within regions-of-interest (ROI) were measured in FA maps deduced from DTI, and were directly compared with Bielschowsky’s silver and Luxol fast blue (BLFB) immunohistological staining. No therapeutic effect on lesion volumes was detected during 6 weeks after TBI. However, treatment significantly increased FA values in the recovery ROI compared with the control group at 5 and 6 weeks after TBI. Myelinated axons histologically measured using BLFB were significantly increased (p<0.001) in the treated group (25.84±1.41%) compared with the control group (17.05±2.95%). Significant correlations were detected between FA and BLFB measures in the recovery ROI (R = 0.54, p<0.02). Methamphetamine treatment significantly reduced modified neurological severity scores from 2 to 6 weeks (p<0.05) and foot-fault errors from 3 days to 6 weeks (p<0.05) after TBI. Thus, the FA data suggest that methamphetamine treatment improves white matter reorganization from 5 to 6 weeks after TBI in rats compared with saline treatment, which may contribute to the observed functional recovery.
doi:10.1371/journal.pone.0061241
PMCID: PMC3630155  PMID: 23637800
4.  Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction 
PLoS ONE  2012;7(9):e40881.
Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.
doi:10.1371/journal.pone.0040881
PMCID: PMC3439445  PMID: 22984394
5.  Adenosine kinase determines the degree of brain injury after ischemic stroke in mice 
Adenosine kinase (ADK) is the major negative metabolic regulator of the endogenous neuroprotectant and homeostatic bioenergetic network regulator adenosine. We used three independent experimental approaches to determine the role of ADK as a molecular target for predicting the brain's susceptibility to ischemic stroke. First, when subjected to a middle cerebral artery occlusion model of focal cerebral ischemia, transgenic fb-Adk-def mice, which have increased ADK expression in striatum (164%) and reduced ADK expression in cortical forebrain (65%), demonstrate increased striatal infarct volume (126%) but almost complete protection of cortex (27%) compared with wild-type (WT) controls, indicating that cerebral injury levels directly correlate to levels of ADK in the CNS. Second, we demonstrate abrogation of lipopolysaccharide (LPS)-induced ischemic preconditioning in transgenic mice with brain-wide ADK overexpression (Adk-tg), indicating that ADK activity negatively regulates LPS-induced tolerance to stroke. Third, using adeno-associated virus-based vectors that carry Adk-sense or -antisense constructs to overexpress or knockdown ADK in vivo, we demonstrate increased (126%) or decreased (51%) infarct volume, respectively, 4 weeks after injection into the striatum of WT mice. Together, our data define ADK as a possible therapeutic target for modulating the degree of stroke-induced brain injury.
doi:10.1038/jcbfm.2011.30
PMCID: PMC3137468  PMID: 21427729
adenosine kinase; gene therapy; neuroprotection; stroke; transgenic mice
6.  Adenosine kinase as a target for therapeutic antisense strategies in epilepsy 
Epilepsia  2011;52(3):589-601.
Summary
Purpose
Given the high incidence of refractory epilepsy, novel therapeutic approaches and concepts are urgently needed. To date, viral mediated delivery and endogenous expression of antisense sequences as a strategy to prevent seizures has received little attention in epilepsy therapy development efforts. Here we validate adenosine kinase (ADK), the astrocyte-based key negative regulator of the brain’s endogenous anticonvulsant adenosine, as a potential therapeutic target for antisense-mediated seizure suppression.
Methods
We developed adeno-associated virus 8 (AAV8)-based gene therapy vectors to selectively modulate ADK expression in astrocytes. Cell type selectivity was achieved by expressing an Adk-cDNA in sense or antisense orientation under the control of an astrocyte-specific gfaABC1D promoter. Viral vectors where injected into the CA3 of wild-type mice or spontaneously epileptic Adk-tg transgenic mice that overexpress ADK in brain. After virus injection, ADK expression was assessed histologically and biochemically. In addition, intracranial EEG-recordings were performed.
Key Findings
We demonstrate in wild-type mice that viral overexpression of ADK within astrocytes is sufficient to trigger spontaneous recurrent seizures in the absence of any other epileptogenic event, whereas ADK downregulation via AAV8-mediated RNA interference almost completely abolished spontaneous recurrent seizures in Adk-tg mice.
Significance
Our data demonstrate that modulation of astrocytic ADK expression can trigger or prevent seizures, respectively. This is the first study to use an antisense approach to validate ADK as a rational therapeutic target for the treatment of epilepsy and suggests that gene therapies based on the knock down of ADK might be a feasible approach to control seizures in refractory epilepsy.
doi:10.1111/j.1528-1167.2010.02947.x
PMCID: PMC3075862  PMID: 21275977
RNAi; gene therapy; adenoassociated virus; AAV8; ADK; seizure
7.  Pre-synaptic regulation of astroglial excitatory neurotransmitter transporter GLT1 
Neuron  2009;61(6):880-894.
SUMMARY
The neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia play a central role in the regulation of synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. The astroglial mechanisms underlying this essential neuron-glial communication are not known. Here we show that presynaptic terminals are sufficient and necessary for GLT1/EAAT2 transcriptional activation and have identified the molecular pathway that regulates astroglial responses to presynaptic input. Presynaptic terminals regulate astroglial GLT1/EAAT2 via kappa B-motif binding phosphoprotein (KBBP), the mouse homologue of human heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds to an essential element of GLT1/EAAT2 promoter. This neuron-stimulated factor is required for GLT1/EATT2 transcriptional activation and is responsible for astroglial alterations in neural injury. Denervation of neuron-astrocyte signaling in vivo, by acute corticospinal tract transection, ricin-induced motor neuron death, or chronic neurodegeneration in amyotrophic lateral sclerosis (ALS) all result in reduced astroglial KBBP expression and transcriptional dysfunction of astroglial transporter expression. Our studies indicate that presynaptic elements dynamically coordinate normal astroglial function and also provide a fundamental signaling mechanism by which altered neuronal function and injury leads to dysregulated astroglia in CNS disease.
doi:10.1016/j.neuron.2009.02.010
PMCID: PMC2743171  PMID: 19323997
8.  Selective Over Expression Of EAAT2 In Astrocytes Enhances Neuroprotection From Moderate But Not Severe Hypoxia-Ischemia 
Neuroscience  2008;155(4):1204-1211.
Attempts have been made to elevate EAAT2 expression in effort to compensate for loss of function and expression associated with disease or pathology. Increased EAAT2 expression has been noted following treatment with β-lactam antibiotics, and during ischemic preconditioning (IPC). However, both of these conditions induce multiple changes in addition to alterations in EAAT2 expression that could potentially contribute to neuroprotection. Therefore, the aim of this study was to selectively overexpress EAAT2 in astrocytes and characterize the cell type specific contribution of this transporter to neuroprotection. To accomplish this we used a recombinant Adeno-associated virus vector, AAV1-GFAP-EAAT2, designed to selectively drive the overexpression of EAAT2 within astrocytes. Both viral mediated gene delivery and β-lactam antibiotic (penicillin-G) treatment of rat hippocampal slice cultures resulted in a significant increase in both the expression of EAAT2, and dihydrokainate (DHK) sensitive glutamate uptake. Penicillin-G provided significant neuroprotection in rat hippocampal slice cultures under conditions of both moderate and severe oxygen glucose deprivation (OGD). In contrast, the overexpression of EAAT2 in astrocytes provided enhanced neuroprotection only following a moderate OGD insult. These results indicate that functional EAAT2 can be selectively overexpressed in astrocytes, leading to enhanced neuroprotection. However, this cell type specific-increase in EAAT2 expression offers only limited protection compared to treatment with penicillin-G.
doi:10.1016/j.neuroscience.2008.05.059
PMCID: PMC2729515  PMID: 18620031
9.  Neurovirulence of Polytropic Murine Retrovirus Is Influenced by Two Separate Regions on Opposite Sides of the Envelope Protein Receptor Binding Domain▿  
Journal of Virology  2008;82(17):8906-8910.
Changes in the envelope proteins of retroviruses can alter the ability of these viruses to infect the central nervous system (CNS) and induce neurological disease. In the present study, nine envelope residues were found to influence neurovirulence of the Friend murine polytropic retrovirus Fr98. When projected on a three-dimensional model, these residues were clustered in two spatially separated groups, one in variable region B of the receptor binding site and the other on the opposite side of the envelope. Further studies indicated a role for these residues in virus replication in the CNS, although the residues did not affect viral entry.
doi:10.1128/JVI.02134-07
PMCID: PMC2519673  PMID: 18579597
10.  A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits 
BMC Genomics  2006;7:206.
Background
Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers.
Results
The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 ± 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 ± 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits.
Conclusion
Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.
doi:10.1186/1471-2164-7-206
PMCID: PMC1564146  PMID: 16904008

Results 1-10 (10)