PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Profiling of MicroRNA in Human and Mouse ES and iPS Cells Reveals Overlapping but Distinct MicroRNA Expression Patterns 
PLoS ONE  2013;8(9):e73532.
Using quantitative PCR-based miRNA arrays, we comprehensively analyzed the expression profiles of miRNAs in human and mouse embryonic stem (ES), induced pluripotent stem (iPS), and somatic cells. Immature pluripotent cells were purified using SSEA-1 or SSEA-4 and were used for miRNA profiling. Hierarchical clustering and consensus clustering by nonnegative matrix factorization showed two major clusters, human ES/iPS cells and other cell groups, as previously reported. Principal components analysis (PCA) to identify miRNAs that segregate in these two groups identified miR-187, 299-3p, 499-5p, 628-5p, and 888 as new miRNAs that specifically characterize human ES/iPS cells. Detailed direct comparisons of miRNA expression levels in human ES and iPS cells showed that several miRNAs included in the chromosome 19 miRNA cluster were more strongly expressed in iPS cells than in ES cells. Similar analysis was conducted with mouse ES/iPS cells and somatic cells, and several miRNAs that had not been reported to be expressed in mouse ES/iPS cells were suggested to be ES/iPS cell-specific miRNAs by PCA. Comparison of the average expression levels of miRNAs in ES/iPS cells in humans and mice showed quite similar expression patterns of human/mouse miRNAs. However, several mouse- or human-specific miRNAs are ranked as high expressers. Time course tracing of miRNA levels during embryoid body formation revealed drastic and different patterns of changes in their levels. In summary, our miRNA expression profiling encompassing human and mouse ES and iPS cells gave various perspectives in understanding the miRNA core regulatory networks regulating pluripotent cells characteristics.
doi:10.1371/journal.pone.0073532
PMCID: PMC3781120  PMID: 24086284
2.  Adenovirus Serotype 3 and 7 Infection with Acute Respiratory Failure in Children in Taiwan, 2010–2011 
PLoS ONE  2013;8(1):e53614.
Objective
Increased incidence of adenovirus infection in children was noticed since September 2010 in Taiwan and severe cases requiring intensive care were noted later. We did this study to find the clinical characteristics and risk factors associated with severe adenovirus infection.
Patients and Methods
We collected cases of severe adenovirus infection between November 2010 and June 2011 to analyze their clinical characteristics in two medical centers in northern Taiwan. Severe adenovirus infection was defined as laboratory-confirmed adenovirus cases with required intensive care. Hexon gene sequencing was performed for molecular genotyping.
Results
45 patients were included, 22 cases (49%) were infected with serotype 7, 19 (42%) with serotype 3, and 4 with serotype 2. The median age (range) was 2.75 years (0.08–15.43 years); 87% were below 5 years. Male to female ratio was 1.65 (28 to 17). Of these patients, 56% had underlying neurological diseases, 50% experienced fever higher than 40°C and 69% suffered fever longer than one week. The clinical diagnosis included pneumonia in 40 (89%) patients, bronchopneumonia in 5 (11%), and encephalitis in 7 (16%). At least 22 patients had pleural effusion. They had complications of respiratory failure (53%), acute respiratory distress syndrome (24%), hypotension (40%), and 6 (13%) patients needed extracorporeal membranous oxygenation. Ten (22%) patients died, all with underlying major systemic diseases and 7 (70%) infected with serotype 7.
Conclusions
Adenovirus serotype 7 and 3 can cause severe disease–even death–in children, especially those with underlying neurological diseases. Patients infected with adenovirus serotype 7 tended to have a higher case-fatality rate.
doi:10.1371/journal.pone.0053614
PMCID: PMC3542335  PMID: 23326469
3.  Transperitoneal Mini-Laparoscopic Pyeloplasty and Concomitant Ureteroscopy-Assisted Pyelolithotomy for Ureteropelvic Junction Obstruction Complicated by Renal Caliceal Stones 
PLoS ONE  2013;8(1):e55026.
Objective
To present our experience of combining transperitoneal mini-laparoscopic pyeloplasty (mini-LP) and concomitant ureteroscopy-assisted pyelolithotomy (U-P) for ureteropelvic junction obstruction (UPJO) complicated by renal caliceal stones in the same session.
Methods
Between May 2007 and December 2011, mini-LP and concomitant U-P was performed in nine patients with UPJO and ipsilateral renal caliceal stones. Stone location and burden were preoperatively assessed. After pyelotomy with appropriate length (about 4 mm), a 16-Fr catheter sheath replaced the uppermost or lowermost laparoscopic trocar and was introduced directly into the renal pelvis under the guidance of a guide wire and laparoscopic vision. A 7.5F rigid ureteroscopy passed through the catheter sheath into the plevis. Intracorporeal lithotripsy and/or pressure irrigation via a pump was used for caliceal stone removal. Subsequently, laparoscopic pyeloplasty was performed in a standard fashion. Postoperative imaging was assessed.
Results
The calculi sizes ranged from 2 to 11 mm (mean, 7.1 mm) and an average of 3 stones per patient was removed (range, 1 to 6 stones). Complete stone clearance confirmed by postoperative imaging was achieved in all patients. Mean operative time was 210 minutes, and estimated blood loss was 20 mL. Mean hospital stay was 5 days (4–7). Stent was removed after 4–8 weeks. No intraoperative or postoperative complications were noted during a mean follow-up of 18.5 months (range, 6 to 24 months).
Conclusions
Mini-LP and concomitant U-P are simple and effective alternatives for the simultaneous management of UPJO complicated by coexisting ipsilateral renal caliceal stones.
doi:10.1371/journal.pone.0055026
PMCID: PMC3541340  PMID: 23326607
4.  Histone Demethylase Jumonji D3 (JMJD3) as a Tumor Suppressor by Regulating p53 Protein Nuclear Stabilization 
PLoS ONE  2012;7(12):e51407.
Histone methylation regulates normal stem cell fate decisions through a coordinated interplay between histone methyltransferases and demethylases at lineage specific genes. Malignant transformation is associated with aberrant accumulation of repressive histone modifications, such as polycomb mediated histone 3 lysine 27 (H3K27me3) resulting in a histone methylation mediated block to differentiation. The relevance, however, of histone demethylases in cancer remains less clear. We report that JMJD3, a H3K27me3 demethylase, is induced during differentiation of glioblastoma stem cells (GSCs), where it promotes a differentiation-like phenotype via chromatin dependent (INK4A/ARF locus activation) and chromatin independent (nuclear p53 protein stabilization) mechanisms. Our findings indicate that deregulation of JMJD3 may contribute to gliomagenesis via inhibition of the p53 pathway resulting in a block to terminal differentiation.
doi:10.1371/journal.pone.0051407
PMCID: PMC3517524  PMID: 23236496
5.  Community Outbreak of Adenovirus, Taiwan, 2011 
Emerging Infectious Diseases  2012;18(11):1825-1832.
Adenovirus type 7 caused a high proportion of severe infections.
In 2011, a large community outbreak of human adenovirus (HAdV) in Taiwan was detected by a nationwide surveillance system. The epidemic lasted from week 11 through week 41 of 2011 (March 14–October 16, 2011). Although HAdV-3 was the predominant strain detected (74%), an abrupt increase in the percentage of infections caused by HAdV-7 occurred, from 0.3% in 2008–2010 to 10% in 2011. Clinical information was collected for 202 inpatients infected with HAdV; 31 (15.2%) had severe infection that required intensive care, and 7 of those patients died. HAdV-7 accounted for 10%, 12%, and 41% of infections among outpatients, inpatients with nonsevere infection, and inpatients with severe infection, respectively (p<0.01). The HAdV-7 strain detected in this outbreak is identical to a strain recently reported in the People’s Republic of China (HAdV7-HZ/SHX/CHN/2009). Absence of circulating HAdV-7 in previous years and introduction of an emerging strain are 2 factors that caused this outbreak.
doi:10.3201/eid1811.120629
PMCID: PMC3559173  PMID: 23092602
adenovirus; surveillance; pneumonia; outbreak; viruses; Taiwan; severe infection; adenovirus type 7; HAdV; human adenovirus
6.  Poly[μ-aqua-diaqua(μ3-1H-benzimid­azole-5-carboxylato-κ3 N 3:O,O′)(μ2-1H-benzimidazole-5-carboxylato-κ3 N 3:O:O′)-μ5-sulfato-μ4-sulfato-tri­cadmium] 
The asymmetric unit of the title compound, [Cd3(C8H5N2O2)2(SO4)2(H2O)3]n, contains three CdII ions, two sulfate anions, two 1H-benzimidazole-5-carboxyl­ate (H2bic) ligands and three coordinated water mol­ecules. One CdII ion is six-coordinated and exhibits a distorted octa­hedral geometry, while the other two CdII ions are seven-coordinated, displaying a distorted penta­gonal–bipyramidal geometry. The CdII ions are bridged by two types of sulfate anions, producing inorganic chains along [100]. These chains are further connected by the H2bic ligands, leading to a three-dimensional framework. N—H⋯O and O—H⋯O hydrogen bonds and π–π inter­actions between the imidazole and benzene rings [centroid–centroid distances = 3.953 (2), 3.507 (2), 3.407 (2) and 3.561 (2) Å] further stabilize the crystal structure.
doi:10.1107/S1600536811034477
PMCID: PMC3200680  PMID: 22058893
7.  A one-dimensional triaqua­europium(III)–1H,3H-benzimidazol-3-ium-5,6-dicarboxyl­ate–sulfate polymeric structure 
In the title coordination polymer, catena-poly[[[triaqua­europium(III)]-bis­(μ-1H,3H-benzimidazol-3-ium-5,6-dicarb­oxyl­ato-κ3 O 5,O 5′:O 6)-[triaqua­europium(III)]-di-μ-sulfato-κ3 O:O,O′;κ3 O,O′:O′] hexahydrate], [Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2O}n, the 1H,3H-benzimidazol-3-ium-5,6-dicarb­oxy­l­ate ligand is protonated at the imidazole group (H2bdc). The EuIII ion is coordinated by nine O atoms from two H2bdc ligands, two sulfate anions and three water mol­ecules, displaying a bicapped trigonal prismatic geometry. The carboxyl­ate groups of the H2bdc ligands and the sulfate anions link the EuIII ions, forming a chain along [010]. These chains are further connected by N—H⋯O and O—H⋯O hydrogen bonds and π–π inter­actions between the imidazole and benzene rings [centroid–centroid distances = 3.997 (4), 3.829 (4) and 3.573 (4) Å] into a three-dimensional supra­molecular network.
doi:10.1107/S1600536811034337
PMCID: PMC3200740  PMID: 22058892
8.  The Porcine Circovirus Type 2 Nonstructural Protein ORF3 Induces Apoptosis in Porcine Peripheral Blood Mononuclear Cells 
The Open Virology Journal  2011;5:148-153.
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases in pigs. To analyze whether the PCV2 nonstructural protein ORF3 is able to induce apoptosis in nature target cells, transient expression of ORF3 in porcine peripheral blood mononuclear cells (PBMC) was performed, and apoptosis was confirmed by terminal dexoynucleotidyl transferase (TdT)-mediated BrdUTP-nick end labeling (TUNEL) assay. The apoptotic responses induced by the full length or the C-terminal half of ORF3 were significantly higher (p < 0.001) than that of cells transfected with the control plasmid. In contrast, the N-terminal half of ORF3 restrictively localized in the cytoplasm and remarkably reduced its ability to induce apoptosis, the apoptotic activity might be correlated with the nuclear localization of ORF3. Furthermore, two clusters of basic residues on the C-terminal half region at the amino acid residues 53-68 and 85-104 could mediate the nuclear localization of fusion protein, confirming their potential role as a nuclear localization signal.
doi:10.2174/1874357901105010148
PMCID: PMC3249664  PMID: 22216074
Apoptosis; Nuclear localization signal; ORF3 protein; Porcine circovirus type 2; Transient expression.
9.  IL-27 induces the transcription factor c-Maf, cytokine IL-21 and costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells 1 
IL-27 has recently been identified as a differentiation factor for the generation of IL-10-producing regulatory type 1 (Tr1) T cells. However, how IL-27 induces the expansion of Tr1 cells has not been elucidated. Here we demonstrate that IL-27 drives expansion and differentiation of IL-10-producing murine Tr1 cells by inducing three key elements: the transcription factor c-Maf, cytokine IL-21 and costimulatory receptor ICOS. IL-27-driven c-Maf expression transactivates IL-21 production, which acts as an autocrine growth factor for the expansion and/or maintenance of IL-27-induced Tr1 cells. ICOS further promotes IL-27-driven Tr1 cells. Each of those elements is essential since loss of c-Maf, IL-21-signaling or ICOS decreases the frequency of IL-27-induced differentiation of IL-10-producing Tr1 cells.
doi:10.4049/jimmunol.0901233
PMCID: PMC2768608  PMID: 19570826
10.  Regulation of endosomal motility and degradation by amyotrophic lateral sclerosis 2/alsin 
Molecular Brain  2009;2:23.
Dysfunction of alsin, particularly its putative Rab5 guanine-nucleotide-exchange factor activity, has been linked to one form of juvenile onset recessive familial amyotrophic lateral sclerosis (ALS2). Multiple lines of alsin knockout (ALS2-/-) mice have been generated to model this disease. However, it remains elusive whether the Rab5-dependent endocytosis is altered in ALS2-/- neurons. To directly examine the Rab5-mediated endosomal trafficking in ALS2-/- neurons, we introduced green fluorescent protein (GFP)-tagged Rab5 into cultured hippocampal neurons to monitor the morphology and motility of Rab5-associated early endosomes. Here we report that Rab5-mediated endocytosis was severely altered in ALS2-/-neurons. Excessive accumulation of Rab5-positive vesicles was observed in ALS2-/- neurons, which correlated with a significant reduction in endosomal motility and augmentation in endosomal conversion to lysosomes. Consequently, a significant increase in endosome/lysosome-dependent degradation of internalized glutamate receptors was observed in ALS2-/- neurons. These phenotypes closely resembled the endosomal trafficking abnormalities induced by a constitutively active form of Rab5 in wild-type neurons. Therefore, our findings reveal a negatively regulatory mechanism of alsin in Rab5-mediated endosomal trafficking, suggesting that enhanced endosomal degradation in ALS2-/- neurons may underlie the pathogenesis of motor neuron degeneration in ALS2 and related motor neuron diseases.
doi:10.1186/1756-6606-2-23
PMCID: PMC2724476  PMID: 19630956
11.  The Chaperone Activity of Heat Shock Protein 90 Is Critical for Maintaining the Stability of Leucine-Rich Repeat Kinase 2 
Parkinson’s disease (PD), a progressive neurodegenerative disease characterized by bradykinesia, rigidity, and resting tremor, is the most common neurodegenerative movement disorder. Although the majority of PD cases are sporadic, some are inherited, including those caused by leucine-rich repeat kinase 2 (LRRK2) mutations. The substitution of serine for glycine at position 2019 (G2019S) in the kinase domain of LRRK2 represents the most prevalent genetic mutation in both familial and apparently sporadic cases of PD. Because mutations in LRRK2 are likely associated with a toxic gain of function, destabilization of LRRK2 may be a novel way to limit its detrimental effects. Here we show that LRRK2 forms a complex with heat shock protein 90 (Hsp90) in vivo and that inhibition of Hsp90 disrupts the association of Hsp90 with LRRK2 and leads to proteasomal degradation of LRRK2. Hsp90 inhibitors may therefore limit the mutant LRRK2-elicited toxicity to neurons. As a proof of principle, we show that Hsp90 inhibitors rescue the axon growth retardation caused by overexpression of the LRRK2 G2019S mutation in neurons. Therefore, inhibition of LRRK2 kinase activity can be achieved by blocking Hsp90-mediated chaperone activity and Hsp90 inhibitors may serve as potential anti-PD drugs.
doi:10.1523/JNEUROSCI.0185-08.2008
PMCID: PMC2564280  PMID: 18367605
Hsp90; LRRK2; G2019S; Parkinson’s disease; protein degradation; chaperone
12.  ALS2/Alsin Knockout Mice and Motor Neuron Diseases 
Neuro-degenerative diseases  2008;5(6):359-366.
Autosomal recessive mutations in the ALS2 gene have been linked to juvenile-onset amyotrophic lateral sclerosis (ALS2), primary lateral sclerosis and juvenile-onset ascending hereditary spastic paraplegia. Except for two recently identified missense mutations, all other mutations in the ALS2 gene lead to a premature stop codon and likely abrogate all the potential functions of alsin, the protein encoded by the ALS2 gene. To study the pathologic mechanisms of ALS2 deficiency, four different lines of ALS2 knockout (ALS2−/−) mice have been generated by independent groups. The loss of ALS2/alsin does not have a drastic effect on the survival or function of motor neurons in mice. However, subtle deficits observed in the behavior and pathology of these mice have aided in our understanding of the relationship between alsin and motor neuron dysfunction. In this review, we summarize and reconcile major findings of ALS2−/− mice and attempt to place these results within the larger context of modeling recessive movement disorders in mice.
doi:10.1159/000151295
PMCID: PMC2556598  PMID: 18714162
Amyotrophic lateral sclerosis; ALS2; Alsin; Knockout mice; Mouse model; Guanine nucleotide exchange factor; Primary lateral sclerosis; Hereditary spastic paraplegia
13.  Amyotrophic Lateral Sclerosis 2-Deficiency Leads to Neuronal Degeneration in Amyotrophic Lateral Sclerosis through Altered AMPA Receptor Trafficking 
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease is caused by a selective loss of motor neurons. One form of juvenile onset autosomal recessive ALS (ALS2) has been linked to the loss of function of the ALS2 gene. The pathogenic mechanism of ALS2-deficiency, however, remains unclear. To further understand the function of alsin that is encoded by the full-length ALS2 gene, we screened proteins interacting with alsin. Here, we report that alsin interacted with glutamate receptor interacting protein 1 (GRIP1) both in vitro and in vivo, and colocalized with GRIP1 in neurons. In support of the physiological interaction between alsin and GRIP1, the subcellular distribution of GRIP1 was altered in ALS2-/- spinal motor neurons, which correlates with a significant reduction of AMPA-type glutamate receptor subunit 2 (GluR2) at the synaptic/cell surface of ALS2-/- neurons. The decrease of calcium-impermeable GluR2-containing AMPA receptors at the cell/synaptic surface rendered ALS2-/- neurons more susceptible to glutamate receptor-mediated neurotoxicity. Our findings reveal a novel function of alsin in AMPA receptor trafficking and provide a novel pathogenic link between ALS2-deficiency and motor neuron degeneration, suggesting a protective role of alsin in maintaining the survival of motor neurons.
doi:10.1523/JNEUROSCI.2084-06.2006
PMCID: PMC2556290  PMID: 17093100
ALS2; knock-out mouse; motor neuron; GRIP1; AMPA receptor; excitotoxicity
14.  ALS2/Alsin Knockout Mice and Motor Neuron Diseases 
Neuro-Degenerative Diseases  2008;5(6):359-366.
Autosomal recessive mutations in the ALS2 gene have been linked to juvenile-onset amyotrophic lateral sclerosis (ALS2), primary lateral sclerosis and juvenile-onset ascending hereditary spastic paraplegia. Except for two recently identified missense mutations, all other mutations in the ALS2 gene lead to a premature stop codon and likely abrogate all the potential functions of alsin, the protein encoded by the ALS2 gene. To study the pathologic mechanisms of ALS2 deficiency, four different lines of ALS2 knockout (ALS2–/–) mice have been generated by independent groups. The loss of ALS2/alsin does not have a drastic effect on the survival or function of motor neurons in mice. However, subtle deficits observed in the behavior and pathology of these mice have aided in our understanding of the relationship between alsin and motor neuron dysfunction. In this review, we summarize and reconcile major findings of ALS2–/– mice and attempt to place these results within the larger context of modeling recessive movement disorders in mice.
doi:10.1159/000151295
PMCID: PMC2556598  PMID: 18714162
Amyotrophic lateral sclerosis; ALS2; Alsin; Knockout mice; Mouse model; Guanine nucleotide exchange factor; Primary lateral sclerosis; Hereditary spastic paraplegia
15.  The G59S Mutation in p150glued Causes Dysfunction of Dynactin in Mice 
The G59S missense mutation at the conserved microtubule-binding domain of p150glued, a major component of dynein/dynactin complex, has been linked to an autosomal dominant form of motor neuron disease (MND). To study how this mutation affects the function of the dynein/dynactin complex and contributes to motor neuron degeneration, we generated p150glued G59S knock-in mice. We found that the G59S mutation destabilizes p150glued and disrupts the function of dynein/dynactin complex, resulting in early embryonic lethality of homozygous knock-in mice. Heterozygous knock-in mice, which developed normally, displayed MND-like phenotypes after 10 months of age, including excessive accumulation of cytoskeletal and synaptic vesicle proteins at neuromuscular junctions, loss of spinal motor neurons, increase of reactive astrogliosis, and shortening of gait compared with wild-type littermates and age-matched p150glued heterozygous knock-out mice. Our findings indicate that the G59S mutation in p150glued abrogates the normal function of p150glued and accelerates motor neuron degeneration.
doi:10.1523/JNEUROSCI.4226-07.2007
PMCID: PMC2367233  PMID: 18094236
dynactin; dynein; p150glued; motor neuron disease; mouse model; ALS
16.  Loss of ALS2 Function Is Insufficient to Trigger Motor Neuron Degeneration in Knock-Out Mice But Predisposes Neurons to Oxidative Stress 
Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, is caused by a selective loss of motor neurons in the CNS. Mutations in the ALS2 gene have been linked to one form of autosomal recessive juvenile onset ALS (ALS2). To investigate the pathogenic mechanisms of ALS2, we generated ALS2 knock-out (ALS2−/−) mice. Although ALS2−/− mice lacked obvious developmental abnormalities, they exhibited age-dependent deficits in motor coordination and motor learning. Moreover, ALS2−/− mice showed a higher anxiety response in the open-field and elevated plus-maze tasks. Although they failed to recapitulate clinical or neuropathological phenotypes consistent with motor neuron disease by 20 months of age, ALS2−/− mice or primary cultured neurons derived from these mice were more susceptible to oxidative stress compared with wild-type controls. These observations suggest that loss of ALS2 function is insufficient to cause major motor deficits or motor neuron degeneration in a mouse model but predisposes neurons to oxidative stress.
doi:10.1523/JNEUROSCI.1645-05.2005
PMCID: PMC2364727  PMID: 16107644
ALS2; knock-out mouse; motor neuron; motor coordination; motor learning; oxidative stress
17.  Hardware Implementation of Multiple Fan Beam Projection Technique in Optical Fibre Process Tomography 
Sensors (Basel, Switzerland)  2008;8(5):3406-3428.
The main objective of this project is to implement the multiple fan beam projection technique using optical fibre sensors with the aim to achieve a high data acquisition rate. Multiple fan beam projection technique here is defined as allowing more than one emitter to transmit light at the same time using the switch-mode fan beam method. For the thirty-two pairs of sensors used, the 2-projection technique and 4-projection technique are being investigated. Sixteen sets of projections will complete one frame of light emission for the 2-projection technique while eight sets of projection will complete one frame of light emission for the 4-projection technique. In order to facilitate data acquisition process, PIC microcontroller and the sample and hold circuit are being used. This paper summarizes the hardware configuration and design for this project.
doi:10.3390/s8053406
PMCID: PMC3675551
optical tomography; Fan Beam; projection; optical fibres
18.  Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes 
BMC Biotechnology  2007;7:62.
Background
Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects.
Methods
We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164) of FMDV VP1.
Results
The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge.
Conclusion
Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.
doi:10.1186/1472-6750-7-62
PMCID: PMC2117009  PMID: 17900346

Results 1-18 (18)