PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (62)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  DHHC8-Dependent PICK1 Palmitoylation is Required for Induction of Cerebellar Long-Term Synaptic Depression 
The Journal of Neuroscience  2013;33(39):15401-15407.
The palmitoyl acyltransferase (PAT) DHHC8 is implicated in synaptic regulation but few DHHC8 substrates are known. Here we report that DHHC8 binds and palmitoylates the PDZ domain-containing protein PICK1 at a cysteine residue that is essential for long-term synaptic depression (LTD) in cultured mouse cerebellar Purkinje neurons. Cerebellar LTD is palmitoylation-dependent and induction of LTD requires DHHC8. Furthermore, PICK1 is a critical DHHC8 substrate whose palmitoylation is necessary for LTD. These results identify the first DHHC8 substrate required for a specific form of synaptic plasticity and provide new insights into synaptic roles of palmitoylation.
doi:10.1523/JNEUROSCI.1283-13.2013
PMCID: PMC3782620  PMID: 24068808
2.  AGAP3 and Arf6 Regulate Trafficking of AMPA Receptors and Synaptic Plasticity 
The Journal of Neuroscience  2013;33(31):12586-12598.
During NMDA receptor-mediated long-term potentiation (LTP), synapses are strengthened by trafficking AMPA receptors to the synapse through a calcium-dependent kinase cascade following activation of NMDA receptors. This process results in a long-lasting increase in synaptic strength that is thought to be a cellular mechanism for learning and memory. Over the past 20 years, many signaling pathways have been shown to be involved in the induction and maintenance of LTP including the MAPK cascade. However, the crucial link between NMDA receptors and the signaling cascades involved in AMPA receptor trafficking during LTP remains elusive. In this study, we aimed to identify and characterize NMDA receptor signaling proteins that link NMDA receptor activation to downstream signaling pathways that lead to trafficking of AMPA receptors. We have identified a novel NMDA receptor interacting signaling protein, AGAP3. AGAP3 contains multiple signaling domains, a GTPase-like domain, a pleckstrin homology domain, and an ArfGAP domain, and exists as a component of the NMDA receptor complex. In addition, we found that AGAP3 regulates NMDA receptor-mediated Ras/ERK and Arf6 signaling pathways during chemically induced LTP in rat primary neuronal cultures. Finally, knocking down AGAP3 expression leads to occlusion of AMPA receptor trafficking during chemically induced LTP. Together, AGAP3 is an essential signaling component of the NMDA receptor complex that links NMDA receptor activation to AMPA receptor trafficking.
doi:10.1523/JNEUROSCI.0341-13.2013
PMCID: PMC3728681  PMID: 23904596
3.  Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation 
Nature neuroscience  2009;12(7):879-887.
The insertion of alpha–amino–3–hydroxy–5–methyl–4–isoxazolepropionic acid receptors (AMPARs) into the plasma membrane is a key step in synaptic delivery of AMPARs during the expression of synaptic plasticity. However, the molecular mechanisms regulating AMPAR insertion remain elusive. By directly visualizing individual insertion events of the AMPAR subunit GluR1, we demonstrate that Protein 4.1N is required for activity dependent GluR1 insertion. PKC phosphorylation of GluR1 S816 and S818 residues enhances 4.1N binding to GluR1, and facilitates GluR1 insertion. In addition, palmitoylation of GluR1 C811 residue modulates PKC phosphorylation and GluR1 insertion. Finally, disrupting 4.1N dependent GluR1 insertion decreases surface expression of GluR1 and the expression of long–term potentiation (LTP). Our study uncovers a novel mechanism that governs activity dependent GluR1 trafficking, reveals an interesting interplay between AMPAR palmitoylation and phosphorylation, and underscores the functional significance of the 4.1N protein in AMPAR trafficking and synaptic plasticity.
doi:10.1038/nn.2351
PMCID: PMC2712131  PMID: 19503082
4.  Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the anterior cingulate cortex after peripheral nerve injury 
Molecular Brain  2014;7(1):76.
Long-term potentiation (LTP) is the key cellular mechanism for physiological learning and pathological chronic pain. Postsynaptic accumulation of AMPA receptor (AMPAR) GluA1 plays an important role for injury-related cortical LTP. However, there is no direct evidence for postsynaptic GluA1 insertion or accumulation after peripheral injury. Here we report nerve injury increased the postsynaptic expression of AMPAR GluA1 in pyramidal neurons in the layer V of the anterior cingulate cortex (ACC), including the corticospinal projecting neurons. Electrophysiological recordings show that potentiation of postsynaptic responses was reversed by Ca2+ permeable AMPAR antagonist NASPM. Finally, behavioral studies show that microinjection of NASPM into the ACC inhibited behavioral sensitization caused by nerve injury. Our findings provide direct evidence that peripheral nerve injury induces postsynaptic GluA1 accumulation in cingulate cortical neurons, and inhibits postsynaptic GluA1 accumulation which may serve as a novel target for treating neuropathic pain.
doi:10.1186/s13041-014-0076-8
PMCID: PMC4221704  PMID: 25359681
5.  Regulation of AMPA Receptor Trafficking and Synaptic Plasticity 
Current opinion in neurobiology  2012;22(3):461-469.
AMPA receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the brain. Dynamic changes in neuronal synaptic efficacy, termed synaptic plasticity, are thought to underlie information coding and storage in learning and memory. One major mechanism that regulates synaptic strength involves the tightly regulated trafficking of AMPARs into and out of synapses. The life cycle of AMPARs from their biosynthesis, membrane trafficking and synaptic targeting to their degradation are controlled by a series of orchestrated interactions with numerous intracellular regulatory proteins. Here we review recent progress made towards the understanding the regulation of AMPAR trafficking, focusing on the roles of several key intracellular AMPAR interacting proteins.
doi:10.1016/j.conb.2011.12.006
PMCID: PMC3392447  PMID: 22217700
6.  Intracellular Modulation of NMDA Receptor Function by Antipsychotic Drugs 
The present study deals with the functional interaction of anti-psychotic drugs and NMDA receptors. We show that both the conventional antipsychotic drug haloperidol and the atypical antipsychotic drug clozapine mediate gene expression via intracellular regulation of NMDA receptors, albeit to different extents. Data obtained in primary striatal culture demonstrate that the intraneuronal signal transduction pathway activated by haloperidol, the cAMP pathway, leads to phosphorylation of the NR1 subtype of the NMDA receptor at 897Ser. Haloperidol treatment is likewise shown to increase 897Ser–NR1 phosphor-ylation in rats in vivo. Mutation of 896Ser and 897Ser to alanine, which prevents phosphorylation at both sites, inhibits cAMP-mediated gene expression. We conclude that antipsychotic drugs have the ability to modulate NMDA receptor function by an intraneuronal signal transduction mechanism. This facilitation of NMDA activity is necessary for antipsychotic drug-mediated gene expression and may contribute to the therapeutic benefits as well as side effects of antipsychotic drug treatment.
PMCID: PMC4203343  PMID: 10818136
haloperidol; clozapine; D2 receptors; NMDA; c-fos; proenkephalin; striatum; CREB; tardive dyskinesia
7.  AMPARs and Synaptic Plasticity: The Last 25 Years 
Neuron  2013;80(3):704-717.
The study of synaptic plasticity and specifically LTP and LTD is one of the most active areas of research in neuroscience. In the last 25 years we have come a long way in our understanding of the mechanisms underlying synaptic plasticity. In 1988, AMPA and NMDA receptors were not even molecularly identified and we only had a simple model of the minimal requirements for the induction of plasticity. It is now clear that the modulation of the AMPA receptor function and membrane trafficking is critical for many forms of synaptic plasticity and a large number of proteins have been identified that regulate this complex process. Here we review the progress over the last two and a half decades and discuss the future challenges in the field.
doi:10.1016/j.neuron.2013.10.025
PMCID: PMC4195488  PMID: 24183021
8.  Regulation of AMPA Receptor Function by the Human Memory-Associated Gene KIBRA 
Neuron  2011;71(6):1022-1029.
KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in non-neuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity.
doi:10.1016/j.neuron.2011.08.017
PMCID: PMC3200575  PMID: 21943600
9.  PICK1 loss of function occludes homeostatic synaptic scaling 
Homeostatic synaptic scaling calibrates neuronal excitability by adjusting synaptic strengths during prolonged changes in synaptic activity. The molecular mechanisms that regulate the trafficking of AMPA receptors (AMPARs) during synaptic scaling are largely unknown. Here we show that chronic activity blockade reduces PICK1 protein level on a time scale that coincides with the accumulation of surface AMPARs. PICK1 loss of function alters the subunit composition and the abundance of GluA2-containing AMPARs. Due to aberrant trafficking of these receptors, the increase in synaptic strength in response to synaptic inactivity is occluded in neurons generated from PICK1 knockout mouse. In agreement with electrophysiological recordings, no defect of AMPAR trafficking is observed in PICK1 knockout neurons in response to elevated neuronal activity. Overall, our data reveal an important role of PICK1 in inactivity-induced synaptic scaling by regulating the subunit composition, abundance and trafficking of GluA2-containing AMPARs.
doi:10.1523/JNEUROSCI.5633-10.2011
PMCID: PMC3071039  PMID: 21307255
AMPA receptors; PICK1; homeostatic plasticity; synaptic scaling
10.  Postsynaptic potentiation of corticospinal projecting neurons in the anterior cingulate cortex after nerve injury 
Molecular Pain  2014;10:33.
Long-term potentiation (LTP) is the key cellular mechanism for physiological learning and pathological chronic pain. In the anterior cingulate cortex (ACC), postsynaptic recruitment or modification of AMPA receptor (AMPAR) GluA1 contribute to the expression of LTP. Here we report that pyramidal cells in the deep layers of the ACC send direct descending projecting terminals to the dorsal horn of the spinal cord (lamina I-III). After peripheral nerve injury, these projection cells are activated, and postsynaptic excitatory responses of these descending projecting neurons were significantly enhanced. Newly recruited AMPARs contribute to the potentiated synaptic transmission of cingulate neurons. PKA-dependent phosphorylation of GluA1 is important, since enhanced synaptic transmission was abolished in GluA1 phosphorylation site serine-845 mutant mice. Our findings provide strong evidence that peripheral nerve injury induce long-term enhancement of cortical-spinal projecting cells in the ACC. Direct top-down projection system provides rapid and profound modulation of spinal sensory transmission, including painful information. Inhibiting cortical top-down descending facilitation may serve as a novel target for treating neuropathic pain.
doi:10.1186/1744-8069-10-33
PMCID: PMC4060852  PMID: 24890933
11.  Reduced phosphorylation of GluA1 subunits relates to anxiety-like behaviours in mice 
Anxiety and depression are highly prevalent and frequently co-morbid conditions. The ionotropic glutamate receptors N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) mediate actions of monoaminergic antidepressants and have been directly targeted by novel fast-acting antidepressants. Less is known about the role of these receptors in anxiety-like states. Here we investigate how two distinct anxiolytic agents, buspirone, a partial 5-HT1A agonist, and diazepam, a benzodiazepine, influence phosphorylation of GluA1 subunits of AMPA receptors at the potentiating residue Ser845 and Ser831 in corticolimbic regions. To test the functional relevance of these changes, phosphomutant GluA1 mice lacking phosphorylatable Ser845 and Ser831 were examined in relevant behavioural paradigms. These mutant mice exhibited a reduced anxiety-like phenotype in the light/dark exploration task and elevated plus maze, but not in the novelty induced hypophagia paradigm. These data indicate that reduced potentiation of the AMPA receptor signalling, via decreased GluA1 phoshorylation, is specifically involved in approach–avoidance based paradigms relevant for anxiety-like behaviours.
doi:10.1017/S1461145712001174
PMCID: PMC3787598  PMID: 23360771
AMPA; glutamate; hippocampus; mutant mice
12.  Opposing Action of Nuclear Factor κB and Polo-like Kinases Determines a Homeostatic End Point for Excitatory Synaptic Adaptation 
The Journal of Neuroscience  2013;33(42):16490-16501.
Homeostatic responses critically adjust synaptic strengths to maintain stability in neuronal networks. Compensatory adaptations to prolonged excitation include induction of Polo-like kinases (Plks) and degradation of spine-associated Rap GTPase-activating protein (SPAR) to reduce synaptic excitation, but mechanisms that limit overshooting and allow refinement of homeostatic adjustments remain poorly understood. We report that Plks produce canonical pathway-mediated activation of the nuclear factor κB (NF-κB) transcription factor in a process that requires the kinase activity of Plks. Chronic elevated activity, which induces Plk expression, also produces Plk-dependent activation of NF-κB. Deficiency of NF-κB, in the context of exogenous Plk2 expression or chronic elevated neuronal excitation, produces exaggerated homeostatic reductions in the size and density of dendritic spines, synaptic AMPA glutamate receptor levels, and excitatory synaptic currents. During the homeostatic response to chronic elevated activity, NF-κB activation by Plks subsequently opposes Plk-mediated SPAR degradation by transcriptionally upregulating SPAR in mouse hippocampal neurons in vitro and in vivo. Exogenous SPAR expression can rescue the overshooting of homeostatic reductions at excitatory synapses in NF-κB-deficient neurons responding to elevated activity. Our data establish an integral feedback loop involving NF-κB, Plks, and SPAR that regulates the end point of homeostatic synaptic adaptation to elevated activity and are the first to implicate a transcription factor in the regulation of homeostatic synaptic responses.
doi:10.1523/JNEUROSCI.2131-13.2013
PMCID: PMC3797372  PMID: 24133254
13.  PICK1 regulates incorporation of calcium-permeable AMPA receptors during cortical synaptic strengthening 
While AMPA-type glutamate receptors (AMPARs) found at principal neuron excitatory synapses typically contain the GluR2 subunit, several forms of behavioral experience have been linked to the de novo synaptic insertion of calcium-permeable (CP) AMPARs defined by their lack of GluR2. In particular, whisker experience drives synaptic potentiation as well as the incorporation of CP-AMPARs in the neocortex. Previous studies implicate PICK1 (protein interacting with C kinase-1) in activity-dependent internalization of GluR2, suggesting one potential mechanism leading to the subsequent accumulation of synaptic CP-AMPARs and increased synaptic strength. Here we test this hypothesis by employing a whisker stimulation paradigm in PICK1 knockout mice. We demonstrate that PICK1 facilitates the surface expression of CP-AMPARs and is indispensible for their experience-dependent synaptic insertion. However, the failure to incorporate CP-AMPARs in PICK1 knockouts does not preclude sensory-induced enhancement of synaptic currents. Our results indicate that synaptic strengthening in the early postnatal cortex does not require PICK1 or the addition of GluR2-lacking AMPARs. Instead, PICK1 permits changes in AMPAR subunit composition to occur in conjunction with synaptic potentiation.
doi:10.1523/JNEUROSCI.6276-09.2010
PMCID: PMC2897179  PMID: 20445062
AMPA receptor; plasticity; synaptic plasticity; somatosensory; somatosensory cortex; cortex
14.  DDIT4/REDD1/RTP801 Is a Novel Negative Regulator of Schwann Cell Myelination 
The Journal of Neuroscience  2013;33(38):15295-15305.
Signals that promote myelination must be tightly modulated to adjust myelin thickness to the axonal diameter. In the peripheral nervous system, axonal neuregulin 1 type III promotes myelination by activating erbB2/B3 receptors and the PI3K/AKT/mTOR pathway in Schwann cells. Conversely, PTEN (phosphatase and tensin homolog on chromosome 10) dephosphorylates PtdIns(3,4,5)P3 and negatively regulates the AKT pathway and myelination. Recently, the DLG1/SAP97 scaffolding protein was described to interact with PTEN to enhance PIP3 dephosphorylation. Here we now report that nerves from mice with conditional inactivation of Dlg1 in Schwann cells display only a transient increase in myelin thickness during development, suggesting that DLG1 is a transient negative regulator of myelination. Instead, we identified DDIT4/RTP801/REDD1 as a sustained negative modulator of myelination. We show that DDIT4 is expressed in Schwann cells and its maximum expression level precedes the peak of AKT activation and of DLG1 activity in peripheral nerves. Moreover, loss of DDIT4 expression both in vitro and in vivo in Ddit4-null mice provokes sustained hypermyelination and enhanced mTORC1 activation, thus suggesting that this molecule is a novel negative regulator of PNS myelination.
doi:10.1523/JNEUROSCI.2408-13.2013
PMCID: PMC3988321  PMID: 24048858
15.  Adrenergic Gating of Hebbian Spike-Timing-Dependent Plasticity in Cortical Interneurons 
The Journal of Neuroscience  2013;33(32):13171-13178.
In pyramidal cells, the induction of spike-dependent plasticity (STDP) follows a simple Hebbian rule in which the order of presynaptic and postsynaptic firing dictates the induction of LTP or LTD. In contrast, cortical fast spiking (FS) interneurons, which control the rate and timing of pyramidal cell firing, reportedly express timing-dependent LTD, but not timing-dependent LTP. Because a mismatch in STDP rules could impact the maintenance of the excitation/inhibition balance, we examined the neuromodulation of STDP in FS cells of mouse visual cortex. We found that stimulation of adrenergic receptors enables the induction of Hebbian bidirectional STDP in FS cells in a manner consistent with a pull–push mechanism previously characterized in pyramidal cells. However, in pyramidal cells, STDP induction depends on NMDA receptors, whereas in FS cells it depends on mGluR5 receptors. We propose that neuromodulators control the polarity of STDP in different synapses in the same manner, and independently of the induction mechanism, by acting downstream in the plasticity cascade. By doing so, neuromodulators may allow coordinated plastic changes in FS and pyramidal cells.
doi:10.1523/JNEUROSCI.5741-12.2013
PMCID: PMC3735889  PMID: 23926270
16.  Norepinephrine Enhances a Discrete Form of Long-Term Depression during Fear Memory Storage 
The Journal of Neuroscience  2013;33(29):11825-11832.
Amygdala excitatory synaptic strengthening is thought to contribute to both conditioned fear and anxiety. Thus, one basis for behavioral flexibility could allow these pathways to be weakened and corresponding emotion to be attenuated. However, synaptic depression within the context of amygdala-dependent behavior remains poorly understood. Previous work identified lateral amygdala (LA) calcium-permeable AMPA receptors (CP-AMPARs) as a key target for synaptic removal in long-term depression (LTD) and persistent fear attenuation. Here we demonstrate that LA neurons express two equally potent forms of LTD with contrasting requirements for protein kinase and phosphatase activity and differential impact on CP-AMPAR trafficking. Selective removal of CP-AMPARs from synapses is contingent on group 1 metabotropic glutamate receptor (mGluR1) and PKC signaling, in contrast to an alternate LTD pathway that nonselectively removes AMPARs and requires calcineurin (PP2b). Intriguingly, the balance between these forms of LTD is shifted by posttraining activation of β-adrenergic receptors in fear conditioned mice, resulting in selective augmentation of mGluR-dependent depression. These results highlight the complexity of core mechanisms in LTD and suggest that norepinephrine exposure mediates a form of synaptic metaplasticity that recalibrates fear memory processing.
doi:10.1523/JNEUROSCI.3317-12.2013
PMCID: PMC3713724  PMID: 23864672
17.  Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7 
Remodeling of central excitatory synapses is crucial for synapse maturation, plasticity, and contributes to neurodevelopmental and psychiatric disorders. Remodeling of dendritic spines and the associated synapses, has been postulated to require the coordination of adhesion with spine morphology and stability; however, the molecular mechanisms that functionally link adhesion molecules with regulators of dendritic spine morphology are largely unknown. Here we report that spine size and N-cadherin content are tightly coordinated. In rat mature cortical pyramidal neurons, N-cadherin-dependent adhesion modulates the morphology of existing spines by recruiting the Rac1 guanine-nucleotide exchange factor kalirin-7 to synapses through the scaffolding protein AF-6/afadin. In pyramidal neurons, N-cadherin, AF-6, and kalirin-7 colocalize at synapses and participate in the same multiprotein complexes. N-cadherin clustering promotes the reciprocal interaction and recruitment of N-cadherin, AF-6, and kalirin-7, increasing the content of Rac1 and in spines and PAK phosphorylation. N-cadherin-dependent spine enlargement requires AF-6 and kalirin-7 function. Conversely, disruption of N-cadherin leads to thin, long spines, with reduced Rac1 contact, caused by uncoupling of N-cadherin, AF-6, and kalirin-7 from each other. By dynamically linking N-cadherin with a regulator of spine plasticity, this pathway allows synaptic adhesion molecules to rapidly coordinate spine remodeling associated with synapse maturation and plasticity. This study hence identifies a novel mechanism whereby cadherins, a major class of synaptic adhesion molecules, signal to the actin cytoskeleton to control the morphology of dendritic spines, and outlines a mechanism that underlies the coordination of synaptic adhesion with spine morphology.
doi:10.1523/JNEUROSCI.1170-08.2008
PMCID: PMC2727754  PMID: 18550750
Rac1; GluR1; postsynaptic density; synaptic plasticity; cytoskeleton; synapse
18.  Protein Tyrosine Kinase Activity and Its Endogenous Substrates in Rat Brain: A Subcellular and Regional Survey 
Journal of neurochemistry  1988;50(5):1447-1455.
The rat CNS contains high levels of tyrosine-specific protein kinases that specifically phosphorylate the tyrosine-containing synthetic peptide poly(Glu80, Tyr20). The phosphorylation of this peptide is rapid and occurs with normal Michaelis–Menten kinetics. Using this peptide to assay for enzyme activity, we have measured the protein tyrosine kinase activity in homogenates from various regions of rat CNS. A marked regional distribution pattern was observed, with high activity present in cerebellum, hippocampus, olfactory bulb, and pyriform cortex, and low activity in the pons/medulla and spinal cord. The distribution of protein tyrosine kinase activity was examined in various subcellular fractions of rat forebrain. The majority of the activity was associated with the particulate fractions, with enrichment in the crude microsomal (P3) and crude synaptic vesicle (LP2) fractions. Moreover, the subcellular distribution of pp60csrc, a well-characterized protein tyrosine kinase, was examined by immunoblot analysis using an affinity-purified antibody specific for pp60csrc. The subcellular distribution of pp60csrc paralleled the overall protein tyrosine kinase activity. In addition, using an antibody specific for phosphotyrosine, endogenous substrates for protein tyrosine kinases were demonstrated on immunoblots of homogenates from the various regions and the subcellular fractions. The immunoblots revealed numerous phosphotyrosine-containing proteins that were present in many of the CNS regions examined and were associated with specific subcellular fractions. The differences in tyrosine-specific protein kinase activity, and in phosphotyrosine-containing proteins, observed in various regional areas and subcellular fractions may reflect specific functional roles for protein tyrosine kinase activity in mammalian brain.
PMCID: PMC3855467  PMID: 2452235
Rat CNS; Poly(Glu80, Tyr20); Phosphotyrosine; Anti-phosphotyrosine antibody; pp60csrc
19.  PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory 
Nature  2013;493(7432):10.1038/nature11802.
Long-term potentiation (LTP), a well-characterized form of synaptic plasticity, has long been postulated as a cellular correlate of learning and memory. Although LTP can persist for long periods of time1, the mechanisms underlying LTP maintenance, in the midst of ongoing protein turnover and synaptic activity, remain elusive. Sustained activation of the brain-specific protein kinase C (PKC) isoform protein kinase M-ζ (PKM-ζ) has been reported to be necessary for both LTP maintenance and long-term memory2. Inhibiting PKM-ζ activity using a synthetic zeta inhibitory peptide (ZIP) based on the PKC-ζ pseudosubstrate sequence reverses established LTP in vitro and in vivo3,4. More notably, infusion of ZIP eliminates memories for a growing list of experience-dependent behaviours, including active place avoidance4, conditioned taste aversion5, fear conditioning and spatial learning6. However, most of the evidence supporting a role for PKM-ζ in LTP and memory relies heavily on pharmacological inhibition of PKM-ζ by ZIP. To further investigate the involvement of PKM-ζ in the maintenance of LTP and memory, we generated transgenic mice lacking PKC-ζ and PKM-ζ. We find that both conventional and conditional PKC-ζ/PKM-ζ knockout mice show normal synaptic transmission and LTP at Schaffer collateral–CA1 synapses, and have no deficits in several hippocampal-dependent learning and memory tasks. Notably, ZIP still reverses LTP in PKC-ζ/PKM-ζ knockout mice, indicating that the effects of ZIP are independent of PKM-ζ.
doi:10.1038/nature11802
PMCID: PMC3830948  PMID: 23283174
20.  Palmitoylation-dependent regulation of glutamate receptors and their PDZ domain-containing partners 
Biochemical Society transactions  2013;41(1):10.1042/BST20120223.
In recent years, it has become clear that both AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid)- and NMDA (N-methyl-D-aspartate)-type glutamate receptors, and many of their interacting partners, are palmitoylated proteins. Interfering with palmitoylation dramatically affects receptor trafficking and distribution and, in turn, can profoundly alter synaptic transmission. Increased knowledge of synaptic palmitoylation not only will aid our understanding of physiological neuronal regulation, but also may provide insights into, and even novel treatments for, neuropathological conditions. In the present paper, we review recent advances regarding the regulation of ionotropic glutamate receptor trafficking and function by palmitoylation.
doi:10.1042/BST20120223
PMCID: PMC3829716  PMID: 23356261
α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR); glutamate receptor; N-methyl-D-aspartate receptor (NMDAR); palmitoylation; PDZ domain; synapse
21.  Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression 
Nature neuroscience  2013;16(4):464-472.
The causes of major depression remain unknown. Antidepressants elevate monoamine concentrations, particularly serotonin, but it remains uncertain which downstream events are critical to their therapeutic effects. We report that endogenous serotonin selectively potentiated excitatory synapses formed by the temporoammonic (TA) pathway with CA1 pyramidal cells via activation of 5-HT1BRs, without affecting nearby Schaffer collateral synapses. This potentiation was expressed postsynaptically by AMPA-type glutamate receptors and required calmodulin-dependent protein kinase-mediated phosphorylation of GluA1 subunits. Because they share common expression mechanisms, long-term potentiation and serotonin-induced potentiation occluded each other. Long-term consolidation of spatial learning, a function of TA-CA1 synapses, was enhanced by 5-HT1BR antagonists. Serotonin-induced potentiation was quantitatively and qualitatively altered in a rat model of depression, restored by chronic antidepressants, and required for the ability of chronic antidepressants to reverse stress-induced anhedonia. Changes in serotonin-mediated potentiation, and its recovery by antidepressants, implicate excitatory synapses as a locus of plasticity in depression.
doi:10.1038/nn.3355
PMCID: PMC3609911  PMID: 23502536
22.  SynaptomeDB: an ontology-based knowledgebase for synaptic genes 
Bioinformatics  2012;28(6):897-899.
Motivation: The synapse is integral to the function of the brain and may be an important source of dysfunction underlying many neuropsychiatric disorders. Consequently, it is an excellent candidate for large-scale genomic and proteomic study. However, while the tools and databases available for the annotation of high-throughput DNA and protein are generally robust, a comprehensive resource dedicated to the integration of information about the synapse is lacking.
Results: We present an integrated database, called SynaptomeDB, to retrieve and annotate genes comprising the synaptome. These genes encode components of the synapse including neurotransmitters and their receptors, adhesion/cytoskeletal proteins, scaffold proteins, membrane transporters. SynaptomeDB integrates various and complex data sources for synaptic genes and proteins.
Availability: http://psychiatry.igm.jhmi.edu/SynaptomeDB/
Contact: mpirooz1@jhmi.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts040
PMCID: PMC3307115  PMID: 22285564
23.  DlgS97/SAP97, a Neuronal Isoform of Discs Large, Regulates Ethanol Tolerance 
PLoS ONE  2012;7(11):e48967.
From a genetic screen for Drosophila melanogaster mutants with altered ethanol tolerance, we identified intolerant (intol), a novel allele of discs large 1 (dlg1). Dlg1 encodes Discs Large 1, a MAGUK (Membrane Associated Guanylate Kinase) family member that is the highly conserved homolog of mammalian PSD-95 and SAP97. The intol mutation disrupted specifically the expression of DlgS97, a SAP97 homolog, and one of two major protein isoforms encoded by dlg1 via alternative splicing. Expression of the major isoform, DlgA, a PSD-95 homolog, appeared unaffected. Ethanol tolerance in the intol mutant could be partially restored by transgenic expression of DlgS97, but not DlgA, in specific neurons of the fly’s brain. Based on co-immunoprecipitation, DlgS97 forms a complex with N-methyl-D-aspartate (NMDA) receptors, a known target of ethanol. Consistent with these observations, flies expressing reduced levels of the essential NMDA receptor subunit dNR1 also showed reduced ethanol tolerance, as did mutants in the gene calcium/calmodulin-dependent protein kinase (caki), encoding the fly homolog of mammalian CASK, a known binding partner of DlgS97. Lastly, mice in which SAP97, the mammalian homolog of DlgS97, was conditionally deleted in adults failed to develop rapid tolerance to ethanol’s sedative/hypnotic effects. We propose that DlgS97/SAP97 plays an important and conserved role in the development of tolerance to ethanol via NMDA receptor-mediated synaptic plasticity.
doi:10.1371/journal.pone.0048967
PMCID: PMC3492131  PMID: 23145041
24.  Arc/Arg3.1 Regulates an Endosomal Pathway Essential for Activity-Dependent β-Amyloid Generation 
Cell  2011;147(3):615-628.
Summary
Assemblies of β-amyloid (Aβ) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The generation of Aβ is coupled to neuronal activity, however the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aβ. Arc is a postsynaptic protein that recruits endophilin2/3 and dynamin to early/recycling endosomes that traffic AMPA receptors to reduce synaptic strength in both Hebbian and non-Hebbian forms of plasticity. The Arc-endosome also traffics APP and BACE1, and Arc physically associates with presenilin1 (PS1) to regulate γ-secretase trafficking and confer activity-dependence. Genetic deletion of Arc reduces Aβ load in a transgenic mouse model of AD. In concert with the finding that patients with AD can express anomalously high levels of Arc, we hypothesize that Arc participates in the pathogenesis of AD.
doi:10.1016/j.cell.2011.09.036
PMCID: PMC3207263  PMID: 22036569
25.  Characterization of In Vivo Dlg1 Deletion on T Cell Development and Function 
PLoS ONE  2012;7(9):e45276.
Background
The polarized reorganization of the T cell membrane and intracellular signaling molecules in response to T cell receptor (TCR) engagement has been implicated in the modulation of T cell development and effector responses. In siRNA-based studies Dlg1, a MAGUK scaffold protein and member of the Scribble polarity complex, has been shown to play a role in T cell polarity and TCR signal specificity, however the role of Dlg1 in T cell development and function in vivo remains unclear.
Methodology/Principal Findings
Here we present the combined data from three independently-derived dlg1-knockout mouse models; two germline deficient knockouts and one conditional knockout. While defects were not observed in T cell development, TCR-induced early phospho-signaling, actin-mediated events, or proliferation in any of the models, the acute knockdown of Dlg1 in Jurkat T cells diminished accumulation of actin at the IS. Further, while Th1-type cytokine production appeared unaffected in T cells derived from mice with a dlg1germline-deficiency, altered production of TCR-dependent Th1 and Th2-type cytokines was observed in T cells derived from mice with a conditional loss of dlg1 expression and T cells with acute Dlg1 suppression, suggesting a differential requirement for Dlg1 activity in signaling events leading to Th1 versus Th2 cytokine induction. The observed inconsistencies between these and other knockout models and siRNA strategies suggest that 1) compensatory upregulation of alternate gene(s) may be masking a role for dlg1 in controlling TCR-mediated events in dlg1 deficient mice and 2) the developmental stage during which dlg1 ablation begins may control the degree to which compensatory events occur.
Conclusions/Significance
These findings provide a potential explanation for the discrepancies observed in various studies using different dlg1-deficient T cell models and underscore the importance of acute dlg1 ablation to avoid the upregulation of compensatory mechanisms for future functional studies of the Dlg1 protein.
doi:10.1371/journal.pone.0045276
PMCID: PMC3445470  PMID: 23028902

Results 1-25 (62)