Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Analysis of the Intracellular Role of Galectins in Cell Growth and Apoptosis 
Galectins are a family of animal lectins with conserved carbohydrate-recognition domains that recognize β-galactosides. Despite structural similarities, these proteins have diverse functions in a variety of cellular processes. While a large number of extracellular functions have been demonstrated for galectins, the existence of intracellular functions has been clearly shown for a number of galectins, including regulation of cell growth and apoptosis; these latter functions may not involve glycan binding. There is considerable interest in intracellular regulation by galectins of cell growth and apoptosis, as these are fundamental cellular processes in normal homeostasis. Their dysregulation can cause pathologies such as autoimmune disorders, cancer, and neural degenerative diseases. Here we describe methods that we routinely perform in the laboratory to investigate the role of galectins in cell growth and apoptosis. These include methods for cell isolation, cell maintenance, and genetic manipulations to perturb galectin gene expression, as well as assays for cell growth and apoptosis.
PMCID: PMC4563987  PMID: 25253158
Galectin; Intracellular regulation; Cell growth; Apoptosis
2.  Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6 
Glycobiology  2014;24(11):1022-1035.
Galectin-3 has been reported to regulate the functions of a number of immune cell types. We previously reported that galectin-3 is translocated to immunological synapses in T cells upon T-cell receptor engagement, where it associates with ALG-2-interacting protein X (Alix). Alix is known to coordinate with the endosomal sorting complex required for transport (ESCRT) to promote human immunodeficiency virus (HIV)-1 virion release. We hypothesized that galectin-3 plays a role in HIV-1 viral budding. Cotransfection of cells of the Jurkat T line with galectin-3 and HIV-1 plasmids resulted in increased HIV-1 budding, and suppression of galectin-3 expression by RNAi in Hut78 and primary CD4+ T cells led to reduced HIV-1 budding. We used immunofluorescence microscopy to observe the partial colocalization of galectin-3, Alix and Gag in HIV-1-infected cells. Results from co-immunoprecipitation experiments indicate that galectin-3 expression promotes Alix-Gag p6 association, whereas the results of Alix knockdown suggest that galectin-3 promotes HIV-1 budding through Alix. HIV-1 particles released from galectin-3-expressing cells acquire the galectin-3 protein in an Alix-dependent manner, with proteins primarily residing inside the virions. We also found that the galectin-3 N-terminal domain interacts with the proline-rich region of Alix. Collectively, these results suggest that endogenous galectin-3 facilitates HIV-1 budding by promoting the Alix-Gag p6 association.
PMCID: PMC4181451  PMID: 24996823
Alix; galectin-3; HIV-1; viral budding
3.  Endogenous Galectin-3 Is Localized in Membrane Lipid Rafts and Regulates Migration of Dendritic Cells 
This study reveals a function of endogenous galectin-3, an animal lectin recognizing β-galactosides, in regulating dendritic cell motility both in vitroand in vivo,which to our knowledge is unreported. First, galectin-3-deficient (gal3−/−) bone marrow-derived dendritic cells exhibited defective chemotaxis compared to gal3+/+ cells. Second, cutaneous dendritic cells in gal3−/− mice displayed reduced migration to draining lymph nodes upon hapten stimulation compared to gal3+/+ mice. Moreover, gal3−/− mice were impaired in the development of contact hypersensitivity relative to gal3+/+ mice in response to a hapten, a process in which dendritic cell trafficking to lymph nodes is critical. In addition, defective signaling was detected in gal3−/− cells upon chemokine receptor activation. By immunofluorescence microscopy, we observed that galectin-3 is localized in membrane ruffles and lamellipodia in stimulated dendritic cells and macrophages. Furthermore, galectin-3 was enriched in lipid raft domains under these conditions. Finally, we determined that ruffles on gal3−/− cells contained structures with lower complexity compared to gal3+/+ cells. In view of the participation of membrane ruffles in signal transduction and cell motility, we conclude that galectin-3 regulates cell migration by functioning at these structures.
PMCID: PMC2645233  PMID: 18843294
4.  Galectin-3 Regulates the Innate Immune Response of Human Monocytes 
The Journal of Infectious Diseases  2012;207(6):947-956.
Galectin-3 is a β-galactoside–binding lectin widely expressed on epithelial and hematopoietic cells, and its expression is frequently associated with a poor prognosis in cancer. Because it has not been well-studied in human infectious disease, we examined galectin-3 expression in mycobacterial infection by studying leprosy, an intracellular infection caused by Mycobacterium leprae. Galectin-3 was highly expressed on macrophages in lesions of patients with the clinically progressive lepromatous form of leprosy; in contrast, galectin-3 was almost undetectable in self-limited tuberculoid lesions. We investigated the potential function of galectin-3 in cell-mediated immunity using peripheral blood monocytes. Galectin-3 enhanced monocyte interleukin 10 production to a TLR2/1 ligand, whereas interleukin 12p40 secretion was unaffected. Furthermore, galectin-3 diminished monocyte to dendritic cell differentiation and T-cell antigen presentation. These data demonstrate an association of galectin-3 with unfavorable host response in leprosy and a potential mechanism for impaired host defense in humans.
PMCID: PMC3571442  PMID: 23255567
human; bacterial infections; galectin-3; monocytes/macrophages; TLR2
5.  Comparative transcriptomic analyses of atopic dermatitis and psoriasis reveal shared neutrophilic inflammation 
Atopic dermatitis and psoriasis are common inflammatory diseases, canonically described as involving distinct T-helper polarization and granulocytic infiltration. Acute atopic dermatitis lesions are associated with TH2 and eosinophilic inflammation, while psoriasis lesions are associated with TH1/17 and neutrophilic inflammation. Despite intensive investigation, these pathways remain incompletely understood in vivo in human subjects.
Using atopic dermatitis and psoriasis lesional skin as exemplar TH2 and TH1/17 diseased tissue, we sought to clarify common and unique molecular and pathophysiologic features in inflamed skin with different types of inflammatory polarization.
We conducted gene expression microarray analyses to identify distinct and commonly dysregulated expression in atopic dermatitis (by Hanifin & Rajka criteria) and psoriasis lesions. We defined gene sets comprising genes encoding cytokines, chemokines, and growth factors that were uniquely or jointly dysregulated in atopic dermatitis and psoriasis, and calculated aggregate gene set expression scores for lesional skin of these dermatoses and healthy control skin.
The atopic dermatitis gene set score correlated with systemic and local measures of allergic inflammation including serum IgE, blood eosinophil count, and tissue eosinophils. Unexpectedly, genes encoding neutrophil chemoattractants among the common gene set were highly expressed in atopic dermatitis lesional skin. H&E and immunohistochemical analyses showed the numbers of neutrophils in atopic dermatitis lesional skin were comparable to those in psoriasis lesional skin, and both were correlated with the extent of expression of neutrophil chemoattractant genes.
These data are evidence that neutrophilic inflammation is a feature of lesional atopic dermatitis pathology, comorbid with allergic inflammation.
PMCID: PMC3511596  PMID: 22920495
Atopic dermatitis; psoriasis; TH2; TH17; gene expression microarray; neutrophil; eosinophil
6.  Galectin-3 regulates intracellular trafficking of epidermal growth factor receptor through Alix and promotes keratinocyte migration 
The epidermal growth factor receptor (EGFR)-mediated signaling pathways are important in a variety of cellular processes, including cell migration and wound re-epithelialization. Intracellular trafficking of EGFR is critical for maintaining EGFR surface expression. Galectin-3, a member of an animal lectin family, has been implicated in a number of physiological and pathological processes. Through studies of galectin-3-deficient mice and cells isolated from these mice, we demonstrated that absence of galectin-3 impairs keratinocyte migration and skin wound re-epithelialization. We have linked this pro-migratory function to a crucial role of cytosolic galectin-3 in controlling intracellular trafficking and cell surface expression of EGFR after EGF stimulation. Without galectin-3, the surface levels of EGFR are dramatically reduced and the receptor accumulates diffusely in the cytoplasm. This is associated with reduced rates of both endocytosis and recycling of the receptor. We have provided evidence that this novel function of galectin-3 may be mediated through interaction with its binding partner Alix, which is a protein component of the endosomal sorting complex required for transport (ESCRT) machinery. Our results suggest that galectin-3 is potentially a critical regulator of a number of important cellular responses through its intracellular control of trafficking of cell surface receptors.
PMCID: PMC3496033  PMID: 22785133
7.  Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1G93A mouse model of amyotrophic lateral sclerosis 
Brain and Behavior  2012;2(5):563-575.
Galectins are pleiotropic carbohydrate-binding lectins involved in inflammation, growth/differentiation, and tissue remodeling. The functional role of galectins in amyotrophic lateral sclerosis (ALS) is unknown. Expression studies revealed increases in galectin-1 mRNA and protein in spinal cords from SOD1G93A mice, and in galectin-3 and -9 mRNAs and proteins in spinal cords of both SOD1G93A mice and sporadic ALS patients. As the increase in galectin-3 appeared in early presymptomatic stages and increased progressively through to end stage of disease in the mouse, it was selected for additional study, where it was found to be mainly expressed by microglia. Galectin-3 antagonists are not selective and do not readily cross the blood–brain barrier; therefore, we generated SOD1G93A/Gal-3−/− transgenic mice to evaluate galectin-3 deletion in a widely used mouse model of ALS. Disease progression, neurological symptoms, survival, and inflammation were assessed to determine the effect of galectin-3 deletion on the SOD1G93A disease phenotype. Galectin-3 deletion did not change disease onset, but resulted in more rapid progression through functionally defined disease stages, more severely impaired neurological symptoms at all stages of disease, and expiration, on average, 25 days earlier than SOD1G93A/Gal-3+/+ cohorts. In addition, microglial staining, as well as TNF-α, and oxidative injury were increased in SOD1G93A/Gal-3−/− mice compared with SOD1G93A/Gal-3+/+ cohorts. These data support an important functional role for microglial galectin-3 in neuroinflammation during chronic neurodegenerative disease. We suggest that elevations in galectin-3 by microglia as disease progresses may represent a protective, anti-inflammatory innate immune response to chronic motor neuron degeneration.
PMCID: PMC3489809  PMID: 23139902
Alternative activation; amyotrophic lateral sclerosis; microglia; motor neuron disease; SOD1
8.  The Promigratory Activity of the Matricellular Protein Galectin-3 Depends on the Activation of PI-3 Kinase 
PLoS ONE  2011;6(12):e29313.
Expression of galectin-3 is associated with sarcoma progression, invasion and metastasis. Here we determined the role of extracellular galectin-3 on migration of sarcoma cells on laminin-111. Cell lines from methylcholanthrene-induced sarcomas from both wild type and galectin-3−/− mice were established. Despite the presence of similar levels of laminin-binding integrins on the cell surface, galectin-3−/− sarcoma cells were more adherent and less migratory than galectin-3+/+ sarcoma cells on laminin-111. When galectin-3 was transiently expressed in galectin-3−/− sarcoma cells, it inhibited cell adhesion and stimulated the migratory response to laminin in a carbohydrate-dependent manner. Extracellular galectin-3 led to the recruitment of SHP-2 phosphatase to focal adhesion plaques, followed by a decrease in the amount of phosphorylated FAK and phospho-paxillin in the lamellipodia of migrating cells. The promigratory activity of extracellular galectin-3 was inhibitable by wortmannin, implicating the activation of a PI-3 kinase dependent pathway in the galectin-3 triggered disruption of adhesion plaques, leading to sarcoma cell migration on laminin-111.
PMCID: PMC3247242  PMID: 22216245
9.  Lack of Galectin-3 Disturbs Mesenteric Lymph Node Homeostasis and B Cell Niches in the Course of Schistosoma mansoni Infection 
PLoS ONE  2011;6(5):e19216.
Galectin-3 is a β-galactoside-binding protein that has been shown to regulate pathophysiological processes, including cellular activation, differentiation and apoptosis. Recently, we showed that galectin-3 acts as a potent inhibitor of B cell differentiation into plasma cells. Here, we have investigated whether galectin-3 interferes with the lymphoid organization of B cell compartments in mesenteric lymph nodes (MLNs) during chronic schistosomiasis, using WT and galectin-3-/- mice. Schistosoma mansoni synthesizes GalNAcβ1-4(Fucα1-3)GlcNAc(Lac-DiNAc) structures (N-acetylgalactosamine β1-4 N-acetylglucosamine), which are known to interact with galectin-3 and elicit an intense humoral response. Antigens derived from the eggs and adult worms are continuously drained to MLNs and induce a polyclonal B cell activation. In the present work, we observed that chronically-infected galectin-3-/- mice exhibited a significant reduced amount of macrophages and B lymphocytes followed by drastic histological changes in B lymphocyte and plasma cell niches in the MLNs. The lack of galectin-3 favored an increase in the lymphoid follicle number, but made follicular cells more susceptible to apoptotic stimuli. There were an excessive quantity of apoptotic bodies, higher number of annexin V+/PI- cells, and reduced clearance of follicular apoptotic cells in the course of schistosomiasis. Here, we observed that galectin-3 was expressed in non-lymphoid follicular cells and its absence was associated with severe damage to tissue architecture. Thus, we convey new information on the role of galectin-3 in regulation of histological events associated with B lymphocyte and plasma cell niches, apoptosis, phagocytosis and cell cycle properties in the MLNs of mice challenged with S.mansoni.
PMCID: PMC3089595  PMID: 21573150
10.  Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation 
Keratinocytes undergo apoptosis in a variety of physiological and pathological conditions. Galectin-3 is a member of a family of β-galactoside-binding animal lectins expressed abundantly in keratinocytes and other epithelial cells. Here we have studied the regulatory role of galectin-3 in keratinocyte apoptosis by using cells from gene-targeted galectin-3 null (gal3−/−) mice. We showed that galectin-3 mRNA was transiently upregulated in ultraviolet-B (UVB)-irradiated wild-type keratinocytes. We found that gal3−/− keratinocytes were significantly more sensitive to apoptosis induced by UVB as well as various other stimuli, both in vitro and in vivo, than wild-type cells. Moreover, we demonstrated that increased apoptosis in gal3−/− keratinocytes was attributable to higher extracellular signal-regulated kinase (ERK) activation and lower AKT activation after UVB irradiation. We conclude that endogenous galectin-3 is an anti-apoptotic molecule in keratinocytes functioning by suppressing ERK activation and enhancing AKT activation and may play a role in the development of apoptosis-related skin diseases.
PMCID: PMC2768377  PMID: 18463681
11.  Lack of Galectin-3 Drives Response to Paracoccidioides brasiliensis toward a Th2-Biased Immunity 
PLoS ONE  2009;4(2):e4519.
There is recent evidence that galectin-3 participates in immunity to infections, mostly by tuning cytokine production. We studied the balance of Th1/Th2 responses to P. brasiliensis experimental infection in the absence of galectin-3. The intermediate resistance to the fungal infection presented by C57BL/6 mice, associated with the development of a mixed type of immunity, was replaced with susceptibility to infection and a Th2-polarized immune response, in galectin-3-deficient (gal3−/−) mice. Such a response was associated with defective inflammatory and delayed type hypersensitivity (DTH) reactions, high IL-4 and GATA-3 expression and low nitric oxide production in the organs of infected animals. Gal3−/− macrophages exhibited higher TLR2 transcript levels and IL-10 production compared to wild-type macrophages after stimulation with P. brasiliensis antigens. We hypothesize that, during an in vivo P. brasiliensis infection, galectin-3 exerts its tuning role on immunity by interfering with the generation of regulatory macrophages, thus hindering the consequent Th2-polarized type of response.
PMCID: PMC2641003  PMID: 19229338
12.  Inhibition of Advanced Glycation and Absence of Galectin-3 Prevent Blood-Retinal Barrier Dysfunction during Short-Term Diabetes 
Breakdown of the inner blood-retinal barrier (iBRB) occurs early in diabetes and is central to the development of sight-threatening diabetic macular edema (DME) as retinopathy progresses. In the current study, we examined how advanced glycation end products (AGEs) forming early in diabetes could modulate vasopermeability factor expression in the diabetic retina and alter inter-endothelial cell tight junction (TJ) integrity leading to iBRB dysfunction. We also investigated the potential for an AGE inhibitor to prevent this acute pathology and examined a role of the AGE-binding protein galectin-3 (Gal-3) in AGE-mediated cell retinal pathophysiology. Diabetes was induced in C57/BL6 wild-type (WT) mice and in Gal-3−/− transgenic mice. Blood glucose was monitored and AGE levels were quantified by ELISA and immunohistochemistry. The diabetic groups were subdivided, and one group was treated with the AGE-inhibitor pyridoxamine (PM) while separate groups of WT and Gal-3−/− mice were maintained as nondiabetic controls. iBRB integrity was assessed by Evans blue assay alongside visualisation of TJ protein complexes via occludin-1 immunolocalization in retinal flat mounts. Retinal expression levels of the vasopermeability factor VEGF were quantified using real-time RT-PCR and ELISA. WT diabetic mice showed significant AGE -immunoreactivity in the retinal microvasculature and also showed significant iBRB breakdown (P < .005). These diabetics had higher VEGF mRNA and protein expression in comparison to controls (P < .01). PM-treated diabetics had normal iBRB function and significantly reduced diabetes-mediated VEGF expression. Diabetic retinal vessels showed disrupted TJ integrity when compared to controls, while PM-treated diabetics demonstrated near-normal configuration. Gal-3−/− mice showed significantly less diabetes-mediated iBRB dysfunction, junctional disruption, and VEGF expression changes than their WT counterparts. The data suggests an AGE-mediated disruption of iBRB via upregulation of VEGF in the diabetic retina, possibly modulating disruption of TJ integrity, even after acute diabetes. Prevention of AGE formation or genetic deletion of Gal-3 can effectively prevent these acute diabetic retinopathy changes.
PMCID: PMC1880865  PMID: 17641742
13.  Critical role of galectin-3 in phagocytosis by macrophages 
Journal of Clinical Investigation  2003;112(3):389-397.
Galectin-3 is a member of a large family of animal lectins. This protein is expressed abundantly by macrophages, but its function in this cell type is not well understood. We have studied the effect of galectin-3 gene targeting on phagocytosis, a major function of macrophages. Compared with wild-type macrophages, galectin-3–deficient (gal3–/–) cells exhibited reduced phagocytosis of IgG-opsonized erythrocytes and apoptotic thymocytes in vitro. In addition, gal3–/– mice showed attenuated phagocytic clearance of apoptotic thymocytes by peritoneal macrophages in vivo. These mice also exhibited reduced IgG-mediated phagocytosis of erythrocytes by Kupffer cells in a murine model of autoimmune hemolytic anemia. Additional experiments indicate that extracellular galectin-3 does not contribute appreciably to the phagocytosis-promoting function of this protein. Confocal microscopic analysis of macrophages containing phagocytosed erythrocytes revealed localization of galectin-3 in phagocytic cups and phagosomes. Furthermore, gal3–/– macrophages exhibited a lower degree of actin rearrangement upon Fcγ receptor crosslinkage. These results indicate that galectin-3 contributes to macrophage phagocytosis through an intracellular mechanism. Thus, galectin-3 may play an important role in both innate and adaptive immunity by contributing to phagocytic clearance of microorganisms and apoptotic cells.
PMCID: PMC166291  PMID: 12897206

Results 1-13 (13)