PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
author:("reggio, Elisa")
1.  LRRK2 interacts with PAK6 to control neurite complexity in mammalian brain 
Journal of neurochemistry  2015;135(6):1242-1256.
Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. PAKs are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology.
Graphical abstract
We propose PAK6 (p21 activated kinase 6) as a novel interactor of LRRK2, a kinase involved in PD (Parkinson's disease). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.
doi:10.1111/jnc.13369
PMCID: PMC4715492  PMID: 26375402
2.  LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson’s Disease, Where Do We Stand? 
Current Neuropharmacology  2016;14(3):214-225.
One of the most promising therapeutic targets for potential diseasemodifying treatment of Parkinson’s disease (PD) is leucine-rich repeat kinase 2 (LRRK2). Specifically, targeting LRRK2’s kinase function has generated a lot of interest from both industry and academia. This work has yielded several published studies showing the feasibility of developing potent, selective and brain permeable LRRK2 kinase inhibitors. The availability of these experimental drugs is contributing to filling in the gaps in our knowledge on the safety and efficacy of LRRK2 kinase inhibition. Recent studies of LRRK2 kinase inhibition in preclinical models point to potential undesired effects in peripheral tissues such as lung and kidney. Also, while strategies are now emerging to measure target engagement of LRRK2 inhibitors, there remains an important need to expand efficacy studies in preclinical models of progressive PD. Future work in the LRRK2 inhibition field must therefore be directed towards developing molecules and treatment regimens which demonstrate efficacy in mammalian models of disease in conditions where safety liabilities are reduced to a minimum.
doi:10.2174/1570159X13666151030102847
PMCID: PMC4857626  PMID: 26517051
kinase inhibitor; LRRK2; Parkinson’s disease; phenotypic assay.
3.  Secretion-Positive LGI1 Mutations Linked to Lateral Temporal Epilepsy Impair Binding to ADAM22 and ADAM23 Receptors 
PLoS Genetics  2016;12(10):e1006376.
Autosomal dominant lateral temporal epilepsy (ADTLE) is a focal epilepsy syndrome caused by mutations in the LGI1 gene, which encodes a secreted protein. Most ADLTE-causing mutations inhibit LGI1 protein secretion, and only a few secretion-positive missense mutations have been reported. Here we describe the effects of four disease-causing nonsynonymous LGI1 mutations, T380A, R407C, S473L, and R474Q, on protein secretion and extracellular interactions. Expression of LGI1 mutant proteins in cultured cells shows that these mutations do not inhibit protein secretion. This finding likely results from the lack of effects of these mutations on LGI1 protein folding, as suggested by 3D protein modelling. In addition, immunofluorescence and co-immunoprecipitation experiments reveal that all four mutations significantly impair interaction of LGI1 with the ADAM22 and ADAM23 receptors on the cell surface. These results support the existence of a second mechanism, alternative to inhibition of protein secretion, by which ADLTE-causing LGI1 mutations exert their loss-of-function effect extracellularly, and suggest that interactions of LGI1 with both ADAM22 and ADAM23 play an important role in the molecular mechanisms leading to ADLTE.
Author Summary
Temporal lobe epilepsy is the most common form of focal epilepsy. It is frequently associated with structural brain abnormalities, but genetic forms caused by mutations in major genes have also been described. Autosomal dominant lateral temporal epilepsy (ADLTE) is a familial condition characterized by focal seizures with prominent auditory symptoms. ADLTE-causing mutations are found in the LGI1 gene in about 30% of affected families. LGI1 encodes a protein, LGI1, that is secreted by neurons. Most LGI1 mutations suppress protein secretion, thereby preventing protein function in the extracellular environment. In this paper, we examine the effects of four LGI1 mutations and show that they do not inhibit secretion of the LGI1 protein but impair its interaction with the neuronal receptors ADAM22 and ADAM23. In agreement with these findings, a three- dimensional model of the protein predicts that these mutations have no impact on LGI1 structure but instead may affect amino acids that are critical for interactions with ADAM receptors. Our results provide novel evidence for an extracellular mechanism through which mutant LGI1 proteins cause ADLTE and strengthen the importance of LGI1-ADAM22/23 protein complex in the mechanisms underlying ADLTE.
doi:10.1371/journal.pgen.1006376
PMCID: PMC5070869  PMID: 27760137
4.  Leucine‐rich repeat kinase 2 interacts with p21‐activated kinase 6 to control neurite complexity in mammalian brain 
Journal of Neurochemistry  2015;135(6):1242-1256.
Abstract
Leucine‐rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21‐activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21‐activated kinases are serine‐threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post‐mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock‐out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2‐mediated pathophysiology.
We propose p21‐activated kinase 6 (PAK6) as a novel interactor of leucine‐rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2‐linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.
doi:10.1111/jnc.13369
PMCID: PMC4715492  PMID: 26375402
LRRK2; neurodegeneration; neuronal cyto‐skeleton; p21‐activated kinases; Parkinson's disease
6.  LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate 
Background
Lrrk2, a gene linked to Parkinson’s disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins.
Results
Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity.
Conclusions
Given that the most common Parkinson’s disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.
Electronic supplementary material
The online version of this article (doi:10.1186/s13024-015-0066-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13024-015-0066-z
PMCID: PMC4711005  PMID: 26758690
Parkinson’s disease; Leucine-rich repeat kinase 2; N-ethylmaleimide sensitive fusion; Presynapse; Phosphorylation
7.  Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells 
Background
Over-activated microglia and chronic neuroinflammation contribute to dopaminergic neuron degeneration and progression of Parkinson’s disease (PD). Leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in autosomal dominantly inherited and sporadic PD cases, is highly expressed in immune cells, in which it regulates inflammation through a yet unclear mechanism.
Methods
Here, using pharmacological inhibition and cultured Lrrk2−/− primary microglia cells, we validated LRRK2 as a positive modulator of inflammation and we investigated its specific function in microglia cells.
Results
Inhibition or genetic deletion of LRRK2 causes reduction of interleukin-1β and cyclooxygenase-2 expression upon lipopolysaccharide-mediated inflammation. LRRK2 also takes part of the signaling trigged by α-synuclein fibrils, which culminates in induction of inflammatory mediators. At the molecular level, loss of LRRK2 or inhibition of its kinase activity results in increased phosphorylation of nuclear factor kappa-B (NF-κB) inhibitory subunit p50 at S337, a protein kinase A (PKA)-specific phosphorylation site, with consequent accumulation of p50 in the nucleus.
Conclusions
Taken together, these findings point to a role of LRRK2 in microglia activation and sustainment of neuroinflammation and in controlling of NF-κB p50 inhibitory signaling. Understanding the molecular pathways coordinated by LRRK2 in activated microglia cells after pathological stimuli such us fibrillar α-synuclein holds the potential to provide novel targets for PD therapeutics.
doi:10.1186/s12974-015-0449-7
PMCID: PMC4673731  PMID: 26646749
LRRK2; Microglia; Neuroinflammation; Parkinson’s disease
8.  Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways 
Journal of neurochemistry  2014;131(2):239-250.
Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson’s disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins.
doi:10.1111/jnc.12798
PMCID: PMC4272680  PMID: 24947832
LRRK2; LRRK1; Parkinson’s disease; Protein-protein interactions; Signaling networks
9.  Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation 
PLoS ONE  2015;10(8):e0136769.
Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.
doi:10.1371/journal.pone.0136769
PMCID: PMC4552590  PMID: 26317353
11.  Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging 
Neurobiology of Disease  2014;71:62-73.
The leucine-rich repeat kinase 2 mutation G2019S in the kinase-domain is the most common genetic cause of Parkinson's disease. To investigate the impact of the G2019S mutation on motor activity in vivo, a longitudinal phenotyping approach was developed in knock-in (KI) mice bearing this kinase-enhancing mutation. Two cohorts of G2019S KI mice and wild-type littermates (WT) were subjected to behavioral tests, specific for akinesia, bradykinesia and overall gait ability, at different ages (3, 6, 10, 15 and 19 months). The motor performance of G2019S KI mice remained stable up to the age of 19 months and did not show the typical age-related decline in immobility time and stepping activity of WT. Several lines of evidence suggest that enhanced LRRK2 kinase activity is the main contributor to the observed hyperkinetic phenotype of G2019S KI mice: i) KI mice carrying a LRRK2 kinase-dead mutation (D1994S KD) showed a similar progressive motor decline as WT; ii) two LRRK2 kinase inhibitors, H-1152 and Nov-LRRK2-11, acutely reversed the hyperkinetic phenotype of G2019S KI mice, while being ineffective in WT or D1994S KD animals. LRRK2 target engagement in vivo was further substantiated by reduction of LRRK2 phosphorylation at Ser935 in the striatum and cortex at efficacious doses of Nov-LRRK2-11, and in the striatum at efficacious doses of H-1152. In summary, expression of the G2019S mutation in the mouse LRRK2 gene confers a hyperkinetic phenotype that is resistant to age-related motor decline, likely via enhancement of LRRK2 kinase activity. This study provides an in vivo model to investigate the effects of LRRK2 inhibitors on motor function.
Highlights
•The LRRK2 G2019S mutation confers a hyperkinetic phenotype.•The LRRK2 D1994S kinase-dead mutation does not affect motor phenotype.•The LRRK2 kinase inhibitors reverse motor phenotype of G2019S mice.•The LRRK2 kinase inhibitors inhibit LRRK2 phosphorylation at Ser935 ex-vivo.
doi:10.1016/j.nbd.2014.07.013
PMCID: PMC4194318  PMID: 25107341
BAC, bacterial artificial chromosome; DA, dopamine; KI, knock-in; KD, kinase dead; LRRK2, leucine-rich repeat kinase 2; PD, Parkinson's disease; ROC, Ras Of Complex; WT, wild-type; Aging; D1994S knock-in; G2019S knock-in; H-1152; LRRK2 kinase-dead; LRRK2; LRRK2 kinase inhibitors; Nov-LRRK2-11; Parkinson's disease; Ser935 phosphorylation
12.  Genetic, Structural, and Molecular Insights into the Function of Ras of Complex Proteins Domains 
Chemistry & Biology  2014;21(7):809-818.
Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson’s disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.
Ras of complex protein domains are GTP binding domains found in the ROCO family of proteins. Civiero et al. summarize recent advances in our understanding of the biology of these domains and efforts to target them in human disease
doi:10.1016/j.chembiol.2014.05.010
PMCID: PMC4104024  PMID: 24981771
13.  LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease? 
It is now well established that chronic inflammation is a prominent feature of several neurodegenerative disorders including Parkinson’s disease (PD). Growing evidence indicates that neuroinflammation can contribute greatly to dopaminergic neuron degeneration and progression of the disease. Recent literature highlights that leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in both autosomal-dominantly inherited and sporadic PD cases, modulates inflammation in response to different pathological stimuli. In this review, we outline the state of the art of LRRK2 functions in microglia cells and in neuroinflammation. Furthermore, we discuss the potential role of LRRK2 in cytoskeleton remodeling and vesicle trafficking in microglia cells under physiological and pathological conditions. We also hypothesize that LRRK2 mutations might sensitize microglia cells toward a pro-inflammatory state, which in turn results in exacerbated inflammation with consequent neurodegeneration.
doi:10.1186/1742-2094-11-52
PMCID: PMC3994422  PMID: 24655756
LRRK2; Neuroinflammation; Microglia; Neurodegeneration; Parkinson’s disease; Dopaminergic neurons
14.  LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex 
Mutations in Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains executing several functions, including GTP hydrolysis, kinase activity, and protein binding. Robust evidence suggests that LRRK2 acts at the synaptic site as a molecular hub connecting synaptic vesicles to cytoskeletal elements via a complex panel of protein-protein interactions. Here we investigated the impact of pharmacological inhibition of LRRK2 kinase activity on synaptic function. Acute treatment with LRRK2 inhibitors reduced the frequency of spontaneous currents, the rate of synaptic vesicle trafficking and the release of neurotransmitter from isolated synaptosomes. The investigation of complementary models lacking LRRK2 expression allowed us to exclude potential off-side effects of kinase inhibitors on synaptic functions. Next we studied whether kinase inhibition affects LRRK2 heterologous interactions. We found that the binding among LRRK2, presynaptic proteins and synaptic vesicles is affected by kinase inhibition. Our results suggest that LRRK2 kinase activity influences synaptic vesicle release via modulation of LRRK2 macro-molecular complex.
doi:10.3389/fnmol.2014.00049
PMCID: PMC4034499  PMID: 24904275
LRRK2; kinase; presynaptic vesicle; synaptic activity; protein interaction
15.  α-Synuclein Oligomers Induced by Docosahexaenoic Acid Affect Membrane Integrity 
PLoS ONE  2013;8(11):e82732.
A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability.
doi:10.1371/journal.pone.0082732
PMCID: PMC3843715  PMID: 24312431
16.  Exosomes-associated neurodegeneration and progression of Parkinson’s disease 
Growing evidence indicates the role of exosomes in a variety of physiological pathways as conveyors of biological materials from cell-to-cell. However the molecular mechanism(s) of secretion and their interaction with receiving cells are yet unclear. Recently, it is emerging that exosomes are involved in pathological processes as potential carriers in the progression of neurodegenerative pathologies associated with misfolded proteins. In the current review we will discuss some recent findings on the key role of exosomes in the spreading of the aggregated products of α-synuclein from neuron-to-neuron and of inflammatory response propagation from immune cell-to-cell; we will highlight the implication of exosomes in the neurodegeneration and progression of the disease and the their potential interplay with genes related to Parkinson’s disease. Increasing our knowledge on the cell-to-cell transmissions might provide new insights into mechanism of disease onset and progression and identify novel strategies for diagnosis and therapeutic intervention in Parkinson and other neurodegenerative diseases.
PMCID: PMC3560468  PMID: 23383394
Exosomes; Parkinson’s disease; α-synuclein; LRRK2; neuronal degeneration
17.  GTP binding and intramolecular regulation by the ROC domain of Death Associated Protein Kinase 1 
Scientific Reports  2012;2:695.
The ROCO proteins are a family of large, multidomain proteins characterised by the presence of a Ras of complex proteins (ROC) domain followed by a COR, or C-terminal of ROC, domain. It has previously been shown that the ROC domain of the human ROCO protein Leucine Rich Repeat Kinase 2 (LRRK2) controls its kinase activity. Here, the ability of the ROC domain of another human ROCO protein, Death Associated Protein Kinase 1 (DAPK1), to bind GTP and control its kinase activity has been evaluated. In contrast to LRRK2, loss of GTP binding by DAPK1 does not result in loss of kinase activity, instead acting to modulate this activity. These data highlight the ROC domain of DAPK1 as a target for modifiers of this proteins function, and casts light on the role of ROC domains as intramolecular regulators in complex proteins with implications for a broad range of human diseases.
doi:10.1038/srep00695
PMCID: PMC3458246  PMID: 23019516
18.  Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers 
PLoS ONE  2012;7(8):e43472.
Leucine-rich repeat kinase 1 and 2 (LRRK1 and LRRK2) are large multidomain proteins containing kinase, GTPase and multiple protein-protein interaction domains, but only mutations in LRRK2 are linked to familial Parkinson's disease (PD). Independent studies suggest that LRRK2 exists in the cell as a complex compatible with the size of a dimer. However, whether this complex is truly a homodimer or a heterologous complex formed by monomeric LRRK2 with other proteins has not been definitively proven due to the limitations in obtaining highly pure proteins suitable for structural characterization. Here, we used stable expression of LRRK1 and LRRK2 in HEK293T cell lines to produce recombinant LRRK1 and LRRK2 proteins of greater than 90% purity. Both purified LRRKs are folded, with a predominantly alpha-helical secondary structure and are capable of binding GTP with similar affinity. Furthermore, recombinant LRRK2 exhibits robust autophosphorylation activity, phosphorylation of model peptides in vitro and ATP binding. In contrast, LRRK1 does not display significant autophosphorylation activity and fails to phosphorylate LRRK2 model substrates, although it does bind ATP. Using these biochemically validated proteins, we show that LRRK1 and LRRK2 are capable of forming homodimers as shown by single-particle transmission electron microscopy and immunogold labeling. These LRRK dimers display an elongated conformation with a mean particle size of 145 Å and 175 Å respectively, which is disrupted by addition of 6M guanidinium chloride. Immunogold staining revealed double-labeled particles also in the pathological LRRK2 mutant G2019S and artificial mutants disrupting GTPase and kinase activities, suggesting that point mutations do not hinder the dimeric conformation. Overall, our findings indicate for the first time that purified and active LRRK1 and LRRK2 can form dimers in their full-length conformation.
doi:10.1371/journal.pone.0043472
PMCID: PMC3430690  PMID: 22952686
19.  Parkinson’s disease and immune system: is the culprit LRRKing in the periphery? 
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain kinase/GTPase that has been recently linked to three pathological conditions: Parkinson’s disease; Crohn’s disease; and leprosy. Although LRRK2 physiological function is poorly understood, a potential role in inflammatory response is suggested by its high expression in immune cells and tissues, its up-regulation by interferon γ, and its function as negative regulator of the immune response transcription factor NFAT1. In this review we discuss the most recent findings regarding how LRRK2 could be a player in the inflammatory response and we propose a scenario where the detrimental effects mediated by Parkinson’s disease LRRK2 mutations may initiate in the periphery and extend to the central nervous system as a consequence of increased levels of pro-inflammatory factors permeable to the blood brain barrier.
doi:10.1186/1742-2094-9-94
PMCID: PMC3391996  PMID: 22594666
Parkinson’s disease; Leucine-rich repeat kinase 2 (LRRK2); Neuroinflammation; Cytokines
20.  INSIGHT INTO THE MODE OF ACTION OF THE LRRK2 Y1699C PATHOGENIC MUTANT 
Journal of neurochemistry  2011;116(2):304-315.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent known cause of autosomal dominant Parkinson's disease (PD). The LRRK2 gene encodes a Roco protein featuring a ROC GTPase and a kinase domain linked by the C-terminal of ROC (COR) domain. Here, we explored the effects of the Y1699C pathogenic LRRK2 mutation in the COR domain on GTPase activity and interactions within the catalytic core of LRRK2. We observed a decrease in GTPase activity for LRRK2 Y1699C comparable to the decrease observed for the R1441C pathogenic mutant and the T1348N dysfunctional mutant. To study the underlying mechanism, we explored the dimerization in the catalytic core of LRRK2. ROC-COR dimerization was significantly weakened by the Y1699C or R1441C/G mutation. Using a competition assay we demonstrated that the intra-molecular ROC:COR interaction is favoured over ROC:ROC dimerization. Interestingly, the intra-molecular ROC:COR interaction was strengthened by the Y1699C mutation. This is supported by a 3D homology model of the ROC-COR tandem of LRRK2, showing that Y1699 is positioned at the intra-molecular ROC:COR interface. In conclusion, our data provides mechanistic insight into the mode of action of the Y1699C LRRK2 mutant: the Y1699C substitution, situated at the intra-molecular ROC:COR interface, strengthens the intra-molecular ROC:COR interaction, thereby locally weakening the dimerization of LRRK2 at the ROC-COR tandem domain resulting in decreased GTPase activity.
doi:10.1111/j.1471-4159.2010.07105.x
PMCID: PMC3005098  PMID: 21073465
Parkinson's disease; leucine rich repeat kinase 2; GTPase; dimerization
21.  Leucine-rich repeat kinase 2 and alpha-synuclein: intersecting pathways in the pathogenesis of Parkinson's disease? 
Although Parkinson's disease (PD) is generally a sporadic neurological disorder, the discovery of monogenic, hereditable forms of the disease has been crucial in delineating the molecular pathways that lead to this pathology. Genes responsible for familial PD can be ascribed to two categories based both on their mode of inheritance and their suggested biological function. Mutations in parkin, PINK1 and DJ-1 cause of recessive Parkinsonism, with a variable pathology often lacking the characteristic Lewy bodies (LBs) in the surviving neurons. Intriguingly, recent findings highlight a converging role of all these genes in mitochondria function, suggesting a common molecular pathway for recessive Parkinsonism. Mutations in a second group of genes, encoding alpha-synuclein (α-syn) and LRRK2, are transmitted in a dominant fashion and generally lead to LB pathology, with α-syn being the major component of these proteinaceous aggregates. In experimental systems, overexpression of mutant proteins is toxic, as predicted for dominant mutations, but the normal function of both proteins is still elusive. The fact that α-syn is heavily phosphorylated in LBs and that LRRK2 is a protein kinase, suggests that a link, not necessarily direct, exists between the two. What are the experimental data supporting a common molecular pathway for dominant PD genes? Do α-syn and LRRK2 target common molecules? Does LRRK2 act upstream of α-syn? In this review we will try to address these of questions based on the recent findings available in the literature.
doi:10.1186/1750-1326-6-6
PMCID: PMC3035023  PMID: 21244648
22.  THE R1441C MUTATION ALTERS THE FOLDING PROPERTIES OF THE ROC DOMAIN OF LRRK2 
Biochimica et biophysica acta  2009;1792(12):1194-1197.
LRRK2 is a 250kDa multidomain protein, mutations in which cause familial Parkinson’s disease. Previously, we have demonstrated that the R1441C mutation in the ROC domain decreases GTPase activity. Here we show that the R1441C alters the folding properties of the ROC domain, lowering its thermodynamic stability. Similar to small GTPases, binding of different guanosine nucleotides alters the stability of the ROC domain, suggesting that there is an alteration in conformation dependent on GDP or GTP occupying the active site. GTP/GDP bound state also alters the self-interaction of the ROC domain, accentuating the impact of the R1441C mutation on this property. These data suggest a mechanism whereby the R1441C mutation can reduce the GTPase activity of LRRK2, and highlights the possibility of targeting the stability of the ROC domain as a therapeutic avenue in LRRK2 disease.
doi:10.1016/j.bbadis.2009.09.010
PMCID: PMC2846748  PMID: 19781641
LRRK2; ROCO protein; GTPase; Parkinson’s disease; differential scanning fluorimetry; circular dichroism
23.  The Parkinson’s disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites 
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited Parkinson’s disease (PD). The protein is large and complex, but pathogenic mutations cluster in a region containing GTPase and kinase domains. LRRK2 can autophosphorylate in vitro within a dimer pair, although the significance of this reaction is unclear. Here, we mapped the sites of autophosphorylation within LRRK2 and found several potential phosphorylation sites within the GTPase domain. Using mass spectrometry, we found that Thr1343 is phosphorylated and, using kinase dead versions of LRRK2, show that this is an autophosphorylation site. However, we also find evidence for additional sites in the GTPase domain and in other regions of the protein suggesting that there may be multiple autophosphorylation sites within LRRK2. These data suggest that the kinase and GTPase activities of LRRK2 may exhibit complex autoregulatory interdependence.
doi:10.1016/j.bbrc.2009.08.163
PMCID: PMC2759846  PMID: 19733152
Parkinson’s disease; kinase; GTPase; autophosphorylation
24.  MKK6 binds and regulates expression of Parkinson’s disease-related protein LRRK2 
Journal of neurochemistry  2010;112(6):1593-1604.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are prevalent causes of late-onset Parkinson’s disease (PD). Here, we show that LRRK2 binds to mitogen-activated protein kinase (MAPK) kinases MKK3, 6, and 7, and that LRRK2 is able to phosphorylate MKK3, 6 and 7. Over-expression of LRRK2 and MKK6 increased the steady state levels of each protein beyond that observed with over-expression of either protein alone. Co-expression increased levels of MKK6 in the membrane more than in the cytoplasm. The increased expression of LRRK2 and MKK6 requires MKK6 activity. The disease-linked LRRK2 mutations, G2019S, R1441C and I2020T, enhance binding of LRRK2 to MKK6. This interaction was further supported by in vivo studies in C. elegans. RNAi knockdown in C. elegans of the endogenous orthologs for MKK6 or p38, sek-1 and pmk-1, abolishes LRRK2-mediated protection against mitochondrial stress. These results were confirmed by deletion of sek-1 in C. elegans. These data demonstrate that MKKs and LRRK2 function in similar biological pathways, and support a role for LRRK2 in modulating the cellular stress response.
doi:10.1111/j.1471-4159.2010.06568.x
PMCID: PMC2856721  PMID: 20067578
MAP kinase; phosphorylation; C. elegans; JNK; p38; membrane
25.  α-Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells 
BMC Neuroscience  2010;11:41.
Background
Oxidative stress has been proposed to be involved in the pathogenesis of Parkinson's disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine and produce various toxic molecules, i.e., free radicals and quinone species. α-Synuclein, a protein found in Lewy bodies characteristic of PD, is also thought to be involved in the pathogenesis of PD and point mutations and multiplications in the gene coding for α-synuclein have been found in familial forms of PD.
Results
We used dopaminergic human neuroblastoma BE(2)-M17 cell lines stably transfected with WT or A30P mutant α-synuclein to characterize the effect of α-synuclein on dopamine toxicity. Cellular toxicity was analyzed by lactate dehydrogenase assay and by fluorescence-activated cell sorter analysis. Increased expression of either wild-type or mutant α-synuclein enhances the cellular toxicity induced by the accumulation of intracellular dopamine or DOPA.
Conclusions
Our results suggest that an interplay between dopamine and α-synuclein can cause cell death in a neuron-like background. The data presented here are compatible with several models of cytotoxicity, including the formation of α-synuclein oligomers and impairment of the lysosomal degradation.
doi:10.1186/1471-2202-11-41
PMCID: PMC2851596  PMID: 20334701

Results 1-25 (30)