Search tips
Search criteria

Results 1-25 (59)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
author:("Cai, huaiyin")
1.  Quercetin targets the interaction of calcineurin with LxVP-type motifs in immunosuppression 
Biochimie  2016;127:50-58.
Calcineurin (CN) is a unique calcium/calmodulin (CaM)-activated serine/threonine phosphatase. To perform its diverse biological functions, CN communicates with many substrates and other proteins. In the physiological activation of T cells, CN acts through transcriptional factors belonging to the NFAT family and other transcriptional effectors. The classic immunosuppressive drug cyclosporin A (CsA) can bind to cyclophilin (CyP) and compete with CN for the NFAT LxVP motif. CsA has debilitating side effects, including nephrotoxicity, hypertension and tremor. It is desirable to develop alternative immunosuppressive agents. To this end, we first tested the interactions between CN and the LxVP-type substrates, including endogenous regulators of calcineurin (RCAN1) and NFAT. Interestingly, we found that quercetin, the primary dietary flavonol, can inhibit the activity of CN and significantly disrupt the associations between CN and its LxVP-type substrates. We then validated the inhibitory effects of quercetin on the CN-NFAT interactions in cell-based assays. Further, quercetin also shows dose-dependent suppression of cytokine gene expression in mouse spleen cells. These data raise the possibility that the interactions of CN with its LxVP-type substrates are potential targets for immunosuppressive agents.
PMCID: PMC5141604  PMID: 27109380
calcineurin; quercetin; RCAN1; NFAT; LxVP-motif; cyclosporine A; cytokine expression
2.  α-Synuclein Mutation Inhibits Endocytosis at Mammalian Central Nerve Terminals 
The Journal of Neuroscience  2016;36(16):4408-4414.
α-Synuclein (α-syn) missense and multiplication mutations have been suggested to cause neurodegenerative diseases, including Parkinson's disease (PD) and dementia with Lewy bodies. Before causing the progressive neuronal loss, α-syn mutations impair exocytosis, which may contribute to eventual neurodegeneration. To understand how α-syn mutations impair exocytosis, we developed a mouse model that selectively expressed PD-related human α-syn A53T (h-α-synA53T) mutation at the calyx of Held terminals, where release mechanisms can be dissected with a patch-clamping technique. With capacitance measurement of endocytosis, we reported that h-α-synA53T, either expressed transgenically or dialyzed in the short term in calyces, inhibited two of the most common forms of endocytosis, the slow and rapid vesicle endocytosis at mammalian central synapses. The expression of h-α-synA53T in calyces also inhibited vesicle replenishment to the readily releasable pool. These findings may help to understand how α-syn mutations impair neurotransmission before neurodegeneration.
SIGNIFICANCE STATEMENT α-Synuclein (α-syn) missense or multiplication mutations may cause neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. The initial impact of α-syn mutations before neuronal loss is impairment of exocytosis, which may contribute to eventual neurodegeneration. The mechanism underlying impairment of exocytosis is poorly understood. Here we report that an α-syn mutant, the human α-syn A53T, inhibited two of the most commonly observed forms of endocytosis, slow and rapid endocytosis, at a mammalian central synapse. We also found that α-syn A53T inhibited vesicle replenishment to the readily releasable pool. These results may contribute to accounting for the widely observed early synaptic impairment caused by α-syn mutations in the progression toward neurodegeneration.
PMCID: PMC4837680  PMID: 27098685
α-synuclein; endocytosis; nerve terminal; Parkinson's disease; transmitter; vesicle
3.  Loss of DJ-1 elicits retinal abnormalities, visual dysfunction, and increased oxidative stress in mice 
Experimental eye research  2015;139:22-36.
DJ-1/PARK7 mutations or deletions cause autosomal recessive early onset Parkinson’s disease (PD). Thus, DJ-1 protein has been extensively studied in brain and neurons. PD patients display visual symptoms; however, the visual symptoms specifically attributed to PD patients carrying DJ-1/PARK7 mutations are not known. In this study, we analyzed the structure and physiology of retinas of 3- and 6-month-old DJ-1 knockout (KO) mice to determine how loss of function of DJ-1 specifically contributes to the phenotypes observed in PD patients. As compared to controls, the DJ-1 KO mice displayed an increase in the amplitude of the scotopic ERG b-wave and cone ERG, while the amplitude of a subset of the dc-ERG components were decreased. The main structural changes in the DJ-1 KO retinas were found in the outer plexiform layer (OPL), photoreceptors and retinal pigment epithelium (RPE), which were observed at 3 months and progressively increased at 6 months. RPE thinning and structural changes within the OPL were observed in the retinas in DJ-1 KO mice. DJ-1 KO retinas also exhibited disorganized outer segments, central decrease in red/green cone opsin staining, decreased labeling of ezrin, broader distribution of ribeye labeling, decreased tyrosine hydroxylase in dopaminergic neurons, and increased 7,8- dihydro-8-oxoguanine-labeled DNA oxidation. Accelerated outer retinal atrophy was observed in DJ-1 KO mice after selective oxidative damage induced by a single tail vein injection of NaIO3, exposing increased susceptibility to oxidative stress. Our data indicate that DJ-1-deficient retinas exhibit signs of morphological abnormalities and physiological dysfunction in association with increased oxidative stress. Degeneration of RPE cells in association with oxidative stress is a key hallmark of age-related macular degeneration (AMD). Therefore, in addition to detailing the visual defects that occur as a result of the absence of DJ-1, our data is also relevant to AMD pathogenesis.
PMCID: PMC4573318  PMID: 26215528
DJ-1 knockout; retina; morphology; physiology; histology; immunohistology; biochemistry; oxidation
4.  Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression 
Human Molecular Genetics  2015;24(18):5299-5312.
Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.
PMCID: PMC4550828  PMID: 26123485
5.  Toll-Like Receptors Promote Mitochondrial Translocation of Nuclear Transcription Factor Nuclear Factor of Activated T-Cells in Prolonged Microglial Activation 
The Journal of Neuroscience  2015;35(30):10799-10814.
Microglia are resident macrophages in the CNS that scavenge pathogens, dying cells, and molecules using pattern recognition Toll-like receptors (TLRs). Nuclear factor of activated T-cells (NFAT) family transcription factors also regulate inflammatory responses in microglia. However, whether there exists cross talk between TLR and NFAT signaling is unclear. Here we show that chronic activation of murine microglia by prolonged stimulation of Toll-like receptor 4 (TLR4) ligand lipopolysaccharides (LPSs) leads to unexpected translocation of NFAT1 into mitochondria. This mitochondrial import of NFAT1 is independent of calcium/calcineurin signaling. Instead, inhibition of Toll/interleukin 1 receptor domain-containing adapter-inducing interferon-β (TRIF) pathway blocks the mitochondrial translocation of NFAT1. Functionally, inhibition of NFAT1 reduces the TRIF-mediated expression of interferon-β and compromises the production of ATP and reactive oxygen species in LPS-treated microglia. Therefore, our findings reveal a new inflammatory signaling pathway that links TLR with NFAT in regulating cytokine production and mitochondrial activity during chronic microglial activation.
SIGNIFICANCE STATEMENT Nuclear factor of activated T-cells (NFAT) family transcription factors are known to undergo nuclear translocation in response to inflammatory stimulation. In this study, we uncovered a surprise transportation of NFATs into mitochondria in microglia after a prolonged treatment with bacteria endotoxin lipopolysaccharides (LPSs). LPSs activated Toll-like receptor 4 and its downstream Toll/interleukin 1 receptor-domain-containing adapter-inducing interferon-β (TRIF) to regulate the mitochondrial translocation of NFAT in microglia, whereas genetic inhibition of NFAT1 compromised TRIF-mediated cytokine production and reduced ATP and reactive oxygen species generation. These findings reveal a previously undescribed mitochondrial translocation of NFAT in microglia responding to extended activation of Toll-like receptor-mediated signaling transduction pathways.
PMCID: PMC4518054  PMID: 26224862
microglia; mitochondria; neuroinflammation; NFAT; Toll-like receptor
6.  A calcineurin- and NFAT-dependent pathway is involved in α-synuclein-induced degeneration of midbrain dopaminergic neurons 
Human Molecular Genetics  2014;23(24):6567-6574.
Parkinson's disease (PD), the most common degenerative movement disorder, is caused by a preferential loss of midbrain dopaminergic (mDA) neurons. Both α-synuclein (α-syn) missense and multiplication mutations have been linked to PD. However, the underlying intracellular signalling transduction pathways of α-syn-mediated mDA neurodegeneration remain elusive. Here, we show that transgenic expression of PD-related human α-syn A53T missense mutation promoted calcineurin (CN) activity and the subsequent nuclear translocation of nuclear factor of activated T cells (NFATs) in mDA neurons. α-syn enhanced the phosphatase activity of CN in both cell-free assays and cell lines transfected with either human wild-type or A53T α-syn. Furthermore, overexpression of α-syn A53T mutation significantly increased the CN-dependent nuclear import of NFATc3 in the mDA neurons of transgenic mice. More importantly, a pharmacological inhibition of CN by cyclosporine A (CsA) ameliorated the α-syn-induced loss of mDA neurons. These findings demonstrate an active involvement of CN- and NFAT-mediated signalling pathway in α-syn-mediated degeneration of mDA neurons in PD.
PMCID: PMC4240205  PMID: 25051958
7.  No apparent transmission of transgenic α–synuclein into nigrostriatal dopaminergic neurons in multiple mouse models 
α–synuclein (α–syn) is the main component of intracytoplasmic inclusions deposited in the brains of patients with Parkinson’s disease (PD) and certain other neurodegenerative disorders. Recent studies have explored the ability of α–syn to propagate between or across neighboring neurons and supposedly “infect” them with a prion–like mechanism. However, much of this research has used stereotaxic injections of heterologous α–syn fibrils to induce the spreading of inclusions in the rodent brains. Whether α–syn is able to transmit from the host cells to their neighboring cells in vivo is unclear.
Using immunestaining, we examined the potential propagation of α–syn into nigrostriatal dopaminergic (DA) neurons in three lines of transgenic mice that overexpress human wild–type α–syn (hα–syn) in different neuron populations.
After testing for three different routes by which hα–syn propagation might occur, we were unable to find any evidence that hα–syn behaved like a prion and could be transmitted overtime into the DA neurons initially lack of hα–syn expression.
In transgenic mice hα–syn does not have the ability to propagate at pathologically significant levels between or across neurons. It must be noted that these observations do not disprove the studies that show its prion–like qualities, but rather that propagation is not detectable in transgenic models that do not use any injections of heterologous proteins or viral vectors to induce a spreading state.
PMCID: PMC4668690  PMID: 26635953
Parkinson’s disease; α-synuclein; Propagation; Dopaminergic neurons; Transgenic mice
8.  NEDD4-mediated HSF1 degradation underlies α-synucleinopathy 
Human Molecular Genetics  2015;25(2):211-222.
Cellular protein homeostasis is achieved by a delicate network of molecular chaperones and various proteolytic processes such as ubiquitin–proteasome system (UPS) to avoid a build-up of misfolded protein aggregates. The latter is a common denominator of neurodegeneration. Neurons are found to be particularly vulnerable to toxic stress from aggregation-prone proteins such as α-synuclein. Induction of heat-shock proteins (HSPs), such as through activated heat shock transcription factor 1 (HSF1) via Hsp90 inhibition, is being investigated as a therapeutic option for proteinopathic diseases. HSF1 is a master stress-protective transcription factor which activates genes encoding protein chaperones (e.g. iHsp70) and anti-apoptotic proteins. However, whether and how HSF1 is dysregulated during neurodegeneration has not been studied. Here, we discover aberrant HSF1 degradation by aggregated α-synuclein (or α-synuclein-induced proteotoxic stress) in transfected neuroblastoma cells. HSF1 dysregulation via α-synuclein was confirmed by in vivo assessment of mouse and in situ studies of human specimens with α-synucleinopathy. We demonstrate that elevated NEDD4 is implicated as the responsible ubiquitin E3 ligase for HSF1 degradation through UPS. Furthermore, pharmacologically induced SIRT1-mediated deacetylation can attenuate aberrant NEDD4-mediated HSF1 degradation. Indeed, we define the acetylation status of the Lys 80 residue located in the DNA-binding domain of HSF1 as a critical factor in modulating HSF1 protein stability in addition to its previously identified role in the transcriptional activity. Together with the finding that preserving HSF1 can alleviate α-synuclein toxicity, this study strongly suggests that aberrant HSF1 degradation is a key neurodegenerative mechanism underlying α-synucleinopathy.
PMCID: PMC4706110  PMID: 26503960
9.  Longitudinal Metabolomics Profiling of Parkinson’s Disease-Related α-Synuclein A53T Transgenic Mice 
PLoS ONE  2015;10(8):e0136612.
Metabolic homeostasis is critical for all biological processes in the brain. The metabolites are considered the best indicators of cell states and their rapid fluxes are extremely sensitive to cellular changes. While there are a few studies on the metabolomics of Parkinson’s disease, it lacks longitudinal studies of the brain metabolic pathways affected by aging and the disease. Using ultra-high performance liquid chromatography and tandem mass spectroscopy (UPLC/MS), we generated the metabolomics profiling data from the brains of young and aged male PD-related α-synuclein A53T transgenic mice as well as the age- and gender-matched non-transgenic (nTg) controls. Principal component and unsupervised hierarchical clustering analyses identified distinctive metabolites influenced by aging and the A53T mutation. The following metabolite set enrichment classification revealed the alanine metabolism, redox and acetyl-CoA biosynthesis pathways were substantially disturbed in the aged mouse brains regardless of the genotypes, suggesting that aging plays a more prominent role in the alterations of brain metabolism. Further examination showed that the interaction effect of aging and genotype only disturbed the guanosine levels. The young A53T mice exhibited lower levels of guanosine compared to the age-matched nTg controls. The guanosine levels remained constant between the young and aged nTg mice, whereas the aged A53T mice showed substantially increased guanosine levels compared to the young mutant ones. In light of the neuroprotective function of guanosine, our findings suggest that the increase of guanosine metabolism in aged A53T mice likely represents a protective mechanism against neurodegeneration, while monitoring guanosine levels could be applicable to the early diagnosis of the disease.
PMCID: PMC4552665  PMID: 26317866
10.  Leucine-Rich Repeat Kinase 2 (Lrrk2) Deficiency Diminishes the Development of Experimental Autoimmune Uveitis (EAU) and the Adaptive Immune Response 
PLoS ONE  2015;10(6):e0128906.
Mutations in LRRK2 are related to certain forms of Parkinson’s disease and, possibly, to the pathogenesis of Crohn’s disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls. Here, we examined the possible involvement of LRRK2 in the pathogenesis of experimental autoimmune uveitis (EAU), an animal model for human uveitis, by testing Lrrk2 (-/-) mice for their capacity to develop this experimental eye disease and related immune responses.
Lrrk2 (-/-) mice and their WT controls (C57Bl/6) were immunized with interphotoreceptor retinoid-binding protein (IRBP) and compared for their development of EAU, delayed type hypersensitivity (DTH) by skin tests, production of cytokines in culture, and expression of interferon (IFN)-γ, interleukin (IL)-17 and FoxP3 by spleen cells, using flow cytometry. Peritoneal macrophages were examined for their production of cytokines/chemokines in culture following stimulation with LPS or the oligodeoxynucleotide CpG. The Lrrk2 (-/-) and WT mice were also compared for their response to bovine serum albumin (BSA).
The Lrrk2 (-/-) mice developed lower levels of EAU, DTH responses and cytokine production by lymphocytes than did their WT controls. Intracellular expression of IFN-γ and IL-17, by spleen cells, and secretion of cytokines/chemokines by activated peritoneal macrophages of Lrrk2 (-/-) mice trended toward diminished levels, although variabilities were noted. The expression levels of FoxP3 by Lrrk2 (-/-) spleen cells, however, were similar to those seen in WT controls. Consistent with their low response to IRBP, Lrrk2 (-/-) mice responded to BSA less vigorously than their WT controls.
Lrrk2 deficiency in mice diminished the development of EAU and the related adaptive immune responses to IRBP as compared to the WT controls.
PMCID: PMC4465928  PMID: 26067490
12.  Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum 
Oncotarget  2015;6(13):10772-10785.
Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.
PMCID: PMC4484418  PMID: 25871402
Alzheimer's disease; amyloid pathology; axonal pathology; brain aging; silent stroke
13.  Non-neuronal and neuronal BACE1 elevation in association with angiopathic and leptomeningeal β-amyloid deposition in the human brain 
BMC Neurology  2015;15:71.
Cerebral amyloid angiopathy (CAA) refers to the deposition of β-amyloid (Aβ) peptides in the wall of brain vasculature, commonly involving capillaries and arterioles. Also being considered a part of CAA is the Aβ deposition in leptomeninge. The cellular origin of angiopathic Aβ and the pathogenic course of CAA remain incompletely understood.
The present study was aimed to explore the pathogenic course of CAA in the human cerebrum via examination of changes in β-secretase-1 (BACE1), the obligatory Aβ producing enzyme, relative to Aβ and other cellular markers, by neuroanatomical and biochemical characterizations with postmortem brain samples and primary cell cultures.
Immunoreactivity (IR) for BACE1 was essentially not visible at vasculature in cases without cerebral amyloidosis (control group, n = 15, age = 86.1 ± 10.3 year). In cases with brain amyloid pathology (n = 15, age = 78.7 ± 12.7 year), increased BACE1 IR was identified locally at capillaries, arterioles and along the pia, localizing to endothelia, perivascular dystrophic neurites and meningeal cells, and often coexisting with vascular iron deposition. Double immunofluorescence with densitometric analysis confirmed a site-specific BACE1 elevation at cerebral arterioles in the development of vascular Aβ deposition. Levels of BACE1 protein, activity and its immediate product (C99) were elevated in leptomeningeal lysates from cases with CAA relative to controls. The expression of BACE1 and other amyloidogenic proteins in the endothelial and meningeal cells was confirmed in primary cultures prepared from human leptomeningeal and arteriolar biopsies.
These results suggest that BACE1 elevation in the endothelia and perivascular neurites may be involved in angiopathic Aβ deposition, while BACE1 elevation in meningeal cells might contribute Aβ to leptomeningeal amyloidosis.
PMCID: PMC4428107  PMID: 25934480
Amyloidosis; Brain aging; Blood brain barrier; Dementia; Neurodegeneration
14.  Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of Parkinson’s disease 
Compelling evidence suggests that inhibition of the complex I of the electron transport chain and elevated oxidative stress are the earliest events during the pathogenesis of Parkinson’s disease (PD). Therefore, anti-oxidants, especially those from natural sources, hold good promise in treating PD as demonstrated mostly by the studies in rodent models.
Herein, we determined if polydatin (piceid), a natural polyphenol, could exert anti-oxidative activity and attenuate dopaminergic neurodegeneration in three commonly used rodent models of PD. Male Sprague Dawley rats given rotenone subcutaneously for 5 weeks developed all the essential features of PD, including a strong increase in catalepsy score and a decrease in motor coordination activity, starting at 4 weeks. Selective increase in oxidative damage was found in the striatal region as compared to the hippocampus and cortex, accompanied by massive degeneration of dopaminergic neurons in the substantia nigra (SNc). Co-administration of piceid orally was able to attenuate rotenone-induced motor defects in a dose dependent manner, with 80 mg/kg dosage showing even better effect than L-levodopa (L-dopa). Piceid treatment significantly prevented the rotenone-induced changes in the levels of glutathione, thioredoxin, ATP, malondialdehyde (MDA) and the manganese superoxide dismutases (SOD) in striatum. Furthermore, piceid treatment rescued rotenone-induced dopaminergic neurodegeneration in the SNc region. Similar protective effect of piceid was also observed in two additional models of PD, MPTP in mice and 6-OHDA in rats, showing corrected motor functions, SOD and MDA activities as well as p-Akt and activated caspase-3 levels.
In three rodent models of PD, piceid preserves and corrects several major anti-oxidant pathways/parameters selectively in the affected SNc region. This implies its potent anti-oxidant activity as one major underscoring mechanism for protecting the vulnerable SNc neurodegeneration in these models. Taken together, these findings strongly suggest a therapeutic potential of piceid in treating PD.
Electronic supplementary material
The online version of this article (doi:10.1186/1750-1326-10-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4506434  PMID: 26013581
Resveratrol derivative; Piceid; Oxidative stress; Anti-oxidants; Parkinson’s disease; Dopaminergic neurodegeneration; Rotenone; Thioredoxin; MPTP; 6-OHDA
15.  Aldehyde Dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson’s disease 
A preferential dysfunction/loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) accounts for the main motor symptoms of Parkinson’s disease (PD), the most common degenerative movement disorder. However, the neuronal loss is not stochastic, but rather displays regionally selectivity, indicating the existence of different DA subpopulations in the SNpc. To identify the underlying molecular determinants is thereby instrumental in understanding the pathophysiological mechanisms of PD-related neuron dysfunction/loss and offering new therapeutic targets. Recently, we have demonstrated that aldehyde dehydrogenase 1 (ALDH1A1) is one such molecular determinant that defines and protects an SNpc DA neuron subpopulation preferentially affected in PD. In this review, we provide further analysis and discussion on the roles of ALDH1A1 in the function and survival of SNpc DA neurons in both rodent and human brains. We also explore the feasibility of ALDH1A1 as a potential biomarker and therapeutic target for PD.
PMCID: PMC4334846  PMID: 25705376
Parkinson’s disease; Substantia nigra pars compacta; Dopaminergic neuron; Aldehyde dehydrogenase 1; α-synuclein; Neurodegeneration; Aging
16.  Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons 
Human Molecular Genetics  2013;22(21):4293-4305.
The substitution of Proline with Serine at residue 56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) has been linked to an atypical autosomal dominant form of familial amyotrophic lateral sclerosis 8 (ALS8). To investigate the pathogenic mechanism of P56S VAPB in ALS, we generated transgenic (Tg) mice that heterologously express human wild-type (WT) and P56S VAPB under the control of a pan-neuronal promoter Thy1.2. While WT VAPB Tg mice did not exhibit any overt motor behavioral phenotypes, P56S VAPB Tg mice developed progressive hyperactivities and other motor abnormalities. VAPB protein was accumulated as large punctate in the soma and proximal dendrites of both corticospinal motor neurons (CSMNs) and spinal motor neurons (SMNs) in P56S VAPB Tg mice. Concomitantly, a significant increase of endoplasmic reticulum stress and unfolded protein response and the resulting up-regulation of pro-apoptotic factor CCAAT/enhancer-binding protein homologous protein expression were observed in the CSMNs and SMNs of P56S VAPB Tg mice. However, only a progressive loss of CSMNs but not SMNs was found in P56S VAPB Tg mice. In SMNs, P56S VAPB promoted a rather selective translocation of VAPB protein onto the postsynaptic site of C-boutons that altered the morphology of C-boutons and impaired the spontaneous rhythmic discharges of SMNs. Therefore, these findings provide new pathophysiological mechanisms of P56S VAPB that differentially affect the function and survival of CSMNs and SMNs in ALS8.
PMCID: PMC3792689  PMID: 23771029
17.  Optogenetic Measurement of Presynaptic Calcium Transients Using Conditional Genetically Encoded Calcium Indicator Expression in Dopaminergic Neurons 
PLoS ONE  2014;9(10):e111749.
Calcium triggers dopamine release from presynaptic terminals of midbrain dopaminergic (mDA) neurons in the striatum. However, calcium transients within mDA axons and axon terminals are difficult to study and little is known about how they are regulated. Here we use a newly-developed method to measure presynaptic calcium transients (PreCaTs) in axons and terminals of mDA neurons with a genetically encoded calcium indicator (GECI) GCaMP3 expressed in transgenic mice. Using a photomultiplier tube-based system, we measured electrical stimulation-induced PreCaTs of mDA neurons in dorsolateral striatum slices from these mice. Single-pulse stimulation produced a transient increase in fluorescence that was completely blocked by a combination of N- and P/Q-type calcium channel blockers. DA and cholinergic, but not serotoninergic, signaling pathways modulated the PreCaTs in mDA fibers. These findings reveal heretofore unexplored dynamic modulation of presynaptic calcium in nigrostriatal terminals.
PMCID: PMC4216119  PMID: 25360513
18.  Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats 
Chronic neuroinflammation is thought to play an etiological role in Alzheimer’s disease (AD), which is characterized pathologically by amyloid and tau formation, as well as neuritic dystrophy and synaptic degeneration. The causal relationship between these pathological events is a topic of ongoing research and discussion. Recent data from transgenic AD models point to a tight spatiotemporal link between neuritic and amyloid pathology, with the obligatory enzyme for β-amyloid (Aβ) production, namely β-secretase-1 (BACE1), is overexpressed in axon terminals undergoing dystrophic change. However, the axonal pathology inherent with BACE1 elevation seen in transgenic AD mice may be secondary to increased soluble Aβ in these genetically modified animals. Here we explored the occurrence of the AD-like axonal and dendritic pathology in adult rat brain affected by LPS-induced chronic neuroinflammation. Unilateral intracerebral LPS injection induced prominent inflammatory response in glial cells in the ipsilateral cortex and hippocampal formation. BACE1 protein levels were elevated the ipsilateral hippocampal lysates in the LPS treated animals relative to controls. BACE1 immunoreactive dystrophic axons appeared in the LPS-treated ipsilateral cortex and hippocampal formation, colocalizing with increased β-amyloid precursor protein and Aβ antibody (4G8) immunolabeling. Quantitative Golgi studies revealed reduction of dendritic branching points and spine density on cortical layer III and hippocampal CA3 pyramidal neurons in the LPS-treated ipsilateral cerebrum. These findings suggest that Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration occur in wildtype mammalian brain in partnership with neuroinflammation following LPS injection.
PMCID: PMC4211261  PMID: 25360394
Amyloid Pathogenesis; Neuritic Dystrophy; Neurodegeneration; Neuroplasticity; Synaptic Pathology
19.  LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity 
Nature neuroscience  2014;17(3):367-376.
Leucine-rich repeat kinase 2 (LRRK2) is enriched in the striatal projection neurons (SPNs). Here we show that LRRK2 negatively regulates protein kinase A (PKA) activity in the SPNs during synaptogenesis and in response to dopamine receptor Drd1 activation. LRRK2 interacted with PKA regulatory subunit IIβ (PKARIIβ). A lack of LRRK2 promoted the synaptic translocation of PKA and increased PKA-mediated phosphorylation of actin-disassembling enzyme cofilin and glutamate receptor GluR1, resulting in abnormal synaptogenesis and transmission in the developing SPNs. Furthermore, PKA-dependent phosphorylation of GluR1 was also aberrantly enhanced in the striatum of young and aged LRRK2-null mice after treatment with a Drd1 agonist. Notably, a Parkinson’s disease-related LRRK2 R1441C missense mutation that impaired the interaction of LRRK2 with PKARIIβ also induced excessive PKA activity in the SPNs. Our findings reveal a new regulatory role of LRRK2 in PKA signaling, and provide a new pathogenic mechanism of SPN dysfunction in Parkinson’s disease.
PMCID: PMC3989289  PMID: 24464040
20.  Leucine-rich repeat kinase 2 (LRRK2) regulates inflammatory bowel disease through the Nuclear Factor of Activated T cells (NFAT) 
Nature immunology  2011;12(11):1063-1070.
Leucine-rich repeat kinase 2 (LRRK2), implicated in familial Parkinson’s disease (PD), was recently identified as a major susceptibility gene for Crohn’s disease (CD) by genome-wide association studies (GWAS). We found that LRRK2 deficiency confers enhanced susceptibility to experimental colitis in mice. Mechanistic studies showed that LRRK2 is a potent negative regulator of NFAT and a component of a previously described RNA-protein complex involving a non-coding RNA repressor of NFAT (NRON). Colitis in LRRK2 deficient mice is exacerbated by enhanced NFAT1 nuclear localization. Moreover, the risk-associated allele Met2397 identified in CD GWAS causes reduced LRRK2 protein expression, which, in light of our unexpected observation that LRRK2 is a negative regulator of NFAT, suggests a pathological mechanism important in human disease.
PMCID: PMC4140245  PMID: 21983832
21.  Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: Retrograde transneuronal modulation after peripheral nerve injury 
Neurotoxicity research  2012;24(1):1-14.
The spinal cord is composed of distinct neuronal groups with well-defined anatomic connections. In some transgenic models of Alzheimer’s disease (AD) amyloid plaques develop in this structure, although the underlying cellular mechanism remains elusive. We attempted to explore the origin, evolution and modulation of spinal β-amyloid (Aβ) deposition using transgenic mice harboring five familiar AD-related mutations (5XFAD) as an experiential model. Dystrophic neuritic elements with enhanced β-secretase-1 (BACE1) immunoreactivity (IR) appeared as early as 2 months of age, and increased with age up to 12 months examined in this study, mostly over the ventral horn (VH). Extracellular Aβ IR emerged and developed during this same period, site-specifically co-existing with BACE1-labeled neurites often in the vicinity of large VH neurons that expressed the mutant human APP. The BACE1-labled neurites almost invariably colocalized with β-amyloid precursor protein (APP) and synaptophysin, and frequently with the vesicular glutamate transporter-1 (VGLUT). Reduced IR for the neuronal specific nuclear antigen (NeuN) occurred in the VH by 12 months of age. In 8 month-old animals surviving 6 months after an unilateral sciatic nerve transection, there were significant increases of Aβ, BACE1 and VGLUT IR in the VN of the ipsilateral relative to contralateral lumbar spinal segments. These results suggest that extracellular Aβ deposition in 5XFAD mouse spinal cord relates to a progressive and amyloidogenic synaptic pathology largely involving presynaptic axon terminals from projection neurons in the brain. Spinal neuritic plaque formation is enhanced after peripheral axotomy, suggesting a retrograde transneuronal modulation on pathogenesis.
PMCID: PMC3563929  PMID: 23055086
Alzheimer’s disease; amyloidogenesis; BACE1; neuritic dystrophy; synaptoplasticity
22.  Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation 
The Journal of Clinical Investigation  2014;124(7):3032-3046.
Subpopulations of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc) display a differential vulnerability to loss in Parkinson’s disease (PD); however, it is not clear why these subsets are preferentially selected in PD-associated neurodegeneration. In rodent SNpc, DA neurons can be divided into two subpopulations based on the expression of aldehyde dehydrogenase 1 (ALDH1A1). Here, we have shown that, in α-synuclein transgenic mice, a murine model of PD-related disease, DA neurodegeneration occurs mainly in a dorsomedial ALDH1A1-negative subpopulation that is also prone to cytotoxic aggregation of α-synuclein. Notably, the topographic ALDH1A1 pattern observed in α-synuclein transgenic mice was conserved in human SNpc. Postmortem evaluation of brains of patients with PD revealed a severe reduction of ALDH1A1 expression and neurodegeneration in the ventral ALDH1A1-positive DA subpopulations. ALDH1A1 expression was also suppressed in α-synuclein transgenic mice. Deletion of Aldh1a1 exacerbated α-synuclein–mediated DA neurodegeneration and α-synuclein aggregation, whereas Aldh1a1-null and control DA neurons were comparably susceptible to 1-methyl-4-phenylpyridinium–, glutamate-, or camptothecin-induced cell death. ALDH1A1 overexpression appeared to preferentially protect against α-synuclein–mediated DA neurodegeneration but did not rescue α-synuclein–induced loss of cortical neurons. Together, our findings suggest that ALDH1A1 protects subpopulations of SNpc DA neurons by preventing the accumulation of dopamine aldehyde intermediates and formation of cytotoxic α-synuclein oligomers.
PMCID: PMC4071380  PMID: 24865427
23.  γ-Secretase binding sites in aged and Alzheimer’s disease human cerebrum: The choroid plexus as a putative origin of CSF Aβ 
The European journal of neuroscience  2013;37(10):1714-1725.
Deposition of β-amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer’s disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although less is clear about the change of the enzyme’s activity in AD brain. Cerebrospinal fluid (CSF) Aβ peptides are considered to derive from brain parenchyma, thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored a possibility of Aβ production and secretion by the choroid plexus (CP). Specific binding density of [3H]-L-685,458, a radiolabeled high affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with comparable ages and postmortem delays. The CP in postmortem samples exhibited exceptionally high [3H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins but released Aβ40 and Aβ42 into the medium. These results suggest that γ-secretase activity appears not altered in the cerebrum in AD related to aged control, nor correlated with regional amyloid plaque pathology. The choroid plexus appears to represent a novel non-neuronal source in the brain that may contribute Aβ into cerebrospinal fluid, probably at reduced levels in AD.
PMCID: PMC3660538  PMID: 23432732
β-amyloid; BACE1; γ-secretase; anti-Aβ therapy; AD biomarker
24.  Can BACE1 Inhibition Mitigate Early Axonal Pathology in Neurological Diseases? 
β-Secretase-1 (BACE1) is the rate-limiting enzyme for the genesis of amyloid-β (Aβ) peptides, the main constituents of the amyloid plaques in the brains of Alzheimer’s disease (AD) patients. BACE1 is being evaluated as an anti-Aβ target for AD therapy. Recent studies indicate that BACE1 elevation is associated with axonal and presynaptic pathology during plaque development. Evidence also points to a biological role for BACE1 in axonal outgrowth and synapse formation during development. Axonal, including presynaptic, pathology exists in AD as well as many other neurological disorders such as Parkinson’s disease, epilepsy, stroke, and trauma. In this review, we discuss pharmaceutical BACE1 inhibition as a therapeutic option for axonal pathogenesis, in addition to amyloid pathology. We first introduce the amyloidogenic processing of amyloid-β protein precursor and describe the normal expression pattern of the amyloidogenic proteins in the brain, with an emphasis on BACE1. We then address BACE1 elevation relative to amyloid plaque development, followed by updating recent understanding of a neurotrophic role of BACE1 in axon and synapse development. We further elaborate the occurrence of axonal pathology in some other neurological conditions. Finally, we propose pharmacological inhibition of excessive BACE1 activity as an option to mitigate early axonal pathology occurring in AD and other neurological disorders.
PMCID: PMC3995167  PMID: 24081378
aging; Alzheimer’s disease; anti-amyloid therapy; dementia; dystrophic neurites; neurodegenerative disorders; neuroplasticity; senile plaques; synaptic dysfunction
25.  MicroRNA-205 regulates the expression of Parkinson's disease-related leucine-rich repeat kinase 2 protein 
Human Molecular Genetics  2012;22(3):608-620.
Recent genome-wide association studies indicate that a simple alteration of Leucine-rich repeat kinase 2 (LRRK2) gene expression may contribute to the etiology of sporadic Parkinson's disease (PD). However, the expression and regulation of LRRK2 protein in the sporadic PD brains remain to be determined. Here, we found that the expression of LRRK2 protein was enhanced in the sporadic PD patients using the frontal cortex tissue from a set of 16 PD patients and 7 control samples. In contrast, no significant difference was detected in the level of LRRK2 mRNA expression between the control and PD cases, suggesting a potential post-transcriptional modification of the LRRK2 protein expression in the sporadic PD brains. Indeed, it was identified that microRNA-205 (miR-205) suppressed the expression of LRRK2 protein through a conserved-binding site at the 3′-untranslated region (UTR) of LRRK2 gene. Interestingly, miR-205 expression was significantly downregulated in the brains of patients with sporadic PD, showing the enhanced LRRK2 protein levels. Also, in vitro studies in the cell lines and primary neuron cultures further established the role of miR-205 in modulating the expression of LRRK2 protein. In addition, introduction of miR-205 prevented the neurite outgrowth defects in the neurons expressing a PD-related LRRK2 R1441G mutant. Together, these findings suggest that downregulation of miR-205 may contribute to the potential pathogenic elevation of LRRK2 protein in the brains of patients with sporadic PD, while overexpression of miR-205 may provide an applicable therapeutic strategy to suppress the abnormal upregulation of LRRK2 protein in PD.
PMCID: PMC3542867  PMID: 23125283

Results 1-25 (59)