Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps 
Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.
PMCID: PMC4032944  PMID: 24904540
subsurface thermal spring; Thaumarchaeota; archaeal ammonia oxidation; nitrogen cycle; functional genes; stable isotope probing
2.  Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species 
Polyhydroxyalkanoates (PHAs) are accumulated in many prokaryotes. Several members of the Halobacteriaceae produce poly-3-hydroxybutyrate (PHB), but it is not known if this is a general property of the family. We evaluated identification methods for PHAs with 20 haloarchaeal species, three of them isolates from Permian salt. Staining with Sudan Black B, Nile Blue A, or Nile Red was applied to screen for the presence of PHAs. Transmission electron microscopy and 1H-nuclear magnetic resonance spectroscopy were used for visualization of PHB granules and chemical confirmation of PHAs in cell extracts, respectively. We report for the first time the production of PHAs by Halococcus sp. (Halococcus morrhuae DSM 1307T, Halococcus saccharolyticus DSM 5350T, Halococcus salifodinae DSM 8989T, Halococcus dombrowskii DSM 14522T, Halococcus hamelinensis JCM 12892T, Halococcus qingdaonensis JCM 13587T), Halorubrum sp. (Hrr. coriense DSM 10284T, Halorubrum chaoviator DSM 19316T, Hrr. chaoviator strains NaxosII and AUS-1), haloalkaliphiles (Natronobacterium gregoryi NCMB 2189T, Natronococcus occultus DSM 3396T) and Halobacterium noricense DSM 9758T. No PHB was detected in Halobacterium salinarum NRC-1 ATCC 700922, Hbt. salinarum R1 and Haloferax volcanii DSM 3757T. Most species synthesized PHAs when growing in synthetic as well as in complex medium. The polyesters were generally composed of PHB and poly-ß-hydroxybutyrate-co-3-hydroxyvalerate (PHBV). Available genomic data suggest the absence of PHA synthesis in some haloarchaea and in all other Euryarchaeota and Crenarchaeota. Homologies between haloarchaeal and bacterial PHA synthesizing enzymes had indicated to some authors probable horizontal gene transfer, which, considering the data obtained in this study, may have occurred already before Permian times.
Electronic supplementary material
The online version of this article (doi:10.1007/s00253-010-2611-6) contains supplementary material, which is available to authorized users.
PMCID: PMC2895300  PMID: 20437233
Polyhydroxybutyrate; Haloarchaea; Halococcus; Halobacterium; Haloalkaliphile
3.  Crenarchaeota and Their Role in the Nitrogen Cycle in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps▿  
Applied and Environmental Microbiology  2008;74(19):5934-5942.
Previous results from a 16S rRNA gene library analysis showed high diversity within the prokaryotic community of a subterranean radioactive thermal spring, the “Franz-Josef-Quelle” (FJQ) in Bad Gastein, Austria, as well as evidence for ammonia oxidation by crenarchaeota. This study reports further characterization of the community by denaturing gradient gel electrophoresis (DGGE) analysis, fluorescence in situ hybridization (FISH), and semiquantitative nitrification measurements. DGGE bands from three types of samples (filtered water, biofilms on glass slides, and naturally grown biofilms), including samples collected at two distinct times (January 2005 and July 2006), were analyzed. The archaeal community consisted mainly of Crenarchaeota of the soil-subsurface-freshwater group (group 1.1b) and showed a higher diversity than in the previous 16S rRNA gene library analysis, as was also found for crenarchaeal amoA genes. No bacterial amoA genes were detected. FISH analysis of biofilms indicated the presence of archaeal cells with an abundance of 5.3% (±4.5%) in the total 4′,6-diamidino-2-phenylindole (DAPI)-stained community. Microcosm experiments of several weeks in duration showed a decline of ammonium that correlated with an increase of nitrite, the presence of crenarchaeal amoA genes, and the absence of bacterial amoA genes. The data suggested that only ammonia-oxidizing archaea (AOA) perform the first step of nitrification in this 45°C environment. The crenarchaeal amoA gene sequences grouped within a novel cluster of amoA sequences from the database, originating from geothermally influenced environments, for which we propose the designation “thermal spring” cluster and which may be older than most AOA from soils on earth.
PMCID: PMC2565979  PMID: 18723663
4.  Communities of Archaea and Bacteria in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps, and Evidence of Ammonia-Oxidizing Crenarchaeota▿  
Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the “Franz-Josef-Quelle” in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (α, β, γ, and δ), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (δ-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities.
PMCID: PMC1797131  PMID: 17085711
5.  Evaluation of the LIVE/DEAD BacLight Kit for Detection of Extremophilic Archaea and Visualization of Microorganisms in Environmental Hypersaline Samples 
Applied and Environmental Microbiology  2004;70(11):6884-6886.
Extremophilic archaea were stained with the LIVE/DEAD BacLight kit under conditions of high ionic strength and over a pH range of 2.0 to 9.3. The reliability of the kit was tested with haloarchaea following permeabilization of the cells. Microorganisms in hypersaline environmental samples were detectable with the kit, which suggests its potential application to future extraterrestrial halites.
PMCID: PMC525124  PMID: 15528557

Results 1-5 (5)