Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Integrative approaches to computational biomedicine 
Interface Focus  2013;3(2):20130003.
The new discipline of computational biomedicine is concerned with the application of computer-based techniques and particularly modelling and simulation to human health. Since 2007, this discipline has been synonymous, in Europe, with the name given to the European Union's ambitious investment in integrating these techniques with the eventual aim of modelling the human body as a whole: the virtual physiological human. This programme and its successors are expected, over the next decades, to transform the study and practice of healthcare, moving it towards the priorities known as ‘4P's’: predictive, preventative, personalized and participatory medicine.
PMCID: PMC3638491
computational biomedicine; virtual physiological human; to human health
2.  A vision and strategy for the virtual physiological human: 2012 update 
Interface Focus  2013;3(2):20130004.
European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595–2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally.
PMCID: PMC3638492  PMID: 24427536
virtual physiological human; physiome; computational physiology; systems biology; multiscale modelling
3.  STATegra EMS: an Experiment Management System for complex next-generation omics experiments 
BMC Systems Biology  2014;8(Suppl 2):S9.
High-throughput sequencing assays are now routinely used to study different aspects of genome organization. As decreasing costs and widespread availability of sequencing enable more laboratories to use sequencing assays in their research projects, the number of samples and replicates in these experiments can quickly grow to several dozens of samples and thus require standardized annotation, storage and management of preprocessing steps. As a part of the STATegra project, we have developed an Experiment Management System (EMS) for high throughput omics data that supports different types of sequencing-based assays such as RNA-seq, ChIP-seq, Methyl-seq, etc, as well as proteomics and metabolomics data. The STATegra EMS provides metadata annotation of experimental design, samples and processing pipelines, as well as storage of different types of data files, from raw data to ready-to-use measurements. The system has been developed to provide research laboratories with a freely-available, integrated system that offers a simple and effective way for experiment annotation and tracking of analysis procedures.
PMCID: PMC4101697  PMID: 25033091
4.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data 
Bioinformatics  2012;29(2):189-196.
Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs.
Results: Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform.
Availability: BMIQ is freely available from
Supplementary information: Supplementary data are available at Bioinformatics online
PMCID: PMC3546795  PMID: 23175756
5.  Workflow for generating competing hypothesis from models with parameter uncertainty 
Interface Focus  2011;1(3):438-449.
Mathematical models are increasingly used in life sciences. However, contrary to other disciplines, biological models are typically over-parametrized and loosely constrained by scarce experimental data and prior knowledge. Recent efforts on analysis of complex models have focused on isolated aspects without considering an integrated approach—ranging from model building to derivation of predictive experiments and refutation or validation of robust model behaviours. Here, we develop such an integrative workflow, a sequence of actions expanding upon current efforts with the purpose of setting the stage for a methodology facilitating an extraction of core behaviours and competing mechanistic hypothesis residing within underdetermined models. To this end, we make use of optimization search algorithms, statistical (machine-learning) classification techniques and cluster-based analysis of the state variables' dynamics and their corresponding parameter sets. We apply the workflow to a mathematical model of fat accumulation in the arterial wall (atherogenesis), a complex phenomena with limited quantitative understanding, thus leading to a model plagued with inherent uncertainty. We find that the mathematical atherogenesis model can still be understood in terms of a few key behaviours despite the large number of parameters. This result enabled us to derive distinct mechanistic predictions from the model despite the lack of confidence in the model parameters. We conclude that building integrative workflows enable investigators to embrace modelling of complex biological processes despite uncertainty in parameters.
PMCID: PMC3262450  PMID: 22670212
computational biology; systems biology; bioinformatics
6.  Systems medicine and integrated care to combat chronic noncommunicable diseases 
Genome Medicine  2011;3(7):43.
We propose an innovative, integrated, cost-effective health system to combat major non-communicable diseases (NCDs), including cardiovascular, chronic respiratory, metabolic, rheumatologic and neurologic disorders and cancers, which together are the predominant health problem of the 21st century. This proposed holistic strategy involves comprehensive patient-centered integrated care and multi-scale, multi-modal and multi-level systems approaches to tackle NCDs as a common group of diseases. Rather than studying each disease individually, it will take into account their intertwined gene-environment, socio-economic interactions and co-morbidities that lead to individual-specific complex phenotypes. It will implement a road map for predictive, preventive, personalized and participatory (P4) medicine based on a robust and extensive knowledge management infrastructure that contains individual patient information. It will be supported by strategic partnerships involving all stakeholders, including general practitioners associated with patient-centered care. This systems medicine strategy, which will take a holistic approach to disease, is designed to allow the results to be used globally, taking into account the needs and specificities of local economies and health systems.
PMCID: PMC3221551  PMID: 21745417
7.  A vision and strategy for the virtual physiological human in 2010 and beyond 
European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE.
PMCID: PMC2944384  PMID: 20439264
virtual physiological human; physiome; computational physiology; multi-scale modelling
8.  Bridging the gap between systems biology and medicine 
Genome Medicine  2009;1(9):88.
Systems biology has matured considerably as a discipline over the last decade, yet some of the key challenges separating current research efforts in systems biology and clinically useful results are only now becoming apparent. As these gaps are better defined, the new discipline of systems medicine is emerging as a translational extension of systems biology. How is systems medicine defined? What are relevant ontologies for systems medicine? What are the key theoretic and methodologic challenges facing computational disease modeling? How are inaccurate and incomplete data, and uncertain biologic knowledge best synthesized in useful computational models? Does network analysis provide clinically useful insight? We discuss the outstanding difficulties in translating a rapidly growing body of data into knowledge usable at the bedside. Although core-specific challenges are best met by specialized groups, it appears fundamental that such efforts should be guided by a roadmap for systems medicine drafted by a coalition of scientists from the clinical, experimental, computational, and theoretic domains.
PMCID: PMC2768995  PMID: 19754960

Results 1-8 (8)