Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Regulation of the Flt3 Gene in Haematopoietic Stem and Early Progenitor Cells 
PLoS ONE  2015;10(9):e0138257.
The MYB transcription factor plays critical roles in normal and malignant haematopoiesis. We previously showed that MYB was a direct activator of FLT3 expression within the context of acute myeloid leukaemia. During normal haematopoiesis, increasing levels of FLT3 expression determine a strict hierarchy within the haematopoietic stem and early progenitor compartment, which associates with lymphoid and myeloid commitment potential. We use the conditional deletion of the Myb gene to investigate the influence of MYB in Flt3 transcriptional regulation within the haematopoietic stem cell (HSC) hierarchy. In accordance with previous report, in vivo deletion of Myb resulted in rapid biased differentiation of HSC with concomitant loss of proliferation capacity. We find that loss of MYB activity also coincided with decreased FLT3 expression. At the chromatin level, the Flt3 promoter is primed in immature HSC, but occupancy of further intronic elements determines expression. Binding to these locations, MYB and C/EBPα need functional cooperation to activate transcription of the locus. This cooperation is cell context dependent and indicates that MYB and C/EBPα activities are inter-dependent in controlling Flt3 expression to influence lineage commitment of multipotential progenitors.
PMCID: PMC4575200  PMID: 26382271
2.  Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns 
Carcinogenesis  2012;34(2):248-256.
The current study investigated transcriptional distortion in prostate cancer cells using the vitamin D receptor (VDR) as a tool to examine how epigenetic events driven by corepressor binding and CpG methylation lead to aberrant gene expression. These relationships were investigated in the non-malignant RWPE-1 cells that were 1α,25(OH)2D3 responsive (RWPE-1) and malignant cell lines that were 1α,25(OH)2D3 partially responsive (RWPE-2) and resistant (PC-3). These studies revealed that selective attenuation and repression of VDR transcriptional responses in the cancer cell lines reflected their loss of antiproliferative sensitivity. This was evident in VDR target genes including VDR, CDKN1A (encodes p21(waf1/cip1)) and GADD45A; NCOR1 knockdown alleviated this malignant transrepression. ChIP assays in RWPE-1 and PC-3 cells revealed that transrepression of CDKN1A was associated with increased NCOR1 enrichment in response to 1α,25(OH)2D3 treatment. These findings supported the concept that retained and increased NCOR1 binding, associated with loss of H3K9ac and increased H3K9me2, may act as a beacon for the initiation and recruitment of DNA methylation. Overexpressed histone methyltransferases (KMTs) were detectable in a wide panel of prostate cancer cell lines compared with RWPE-1 and suggested that generation of H3K9me2 states would be favored. Cotreatment of cells with the KMT inhibitor, chaetocin, increased 1α,25(OH)2D3-mediated induction of CDKN1A expression supporting a role for this event to disrupt CDKN1A regulation. Parallel surveys in PC-3 cells of CpG methylation around the VDR binding regions on CDKN1A revealed altered basal and VDR-regulated DNA methylation patterns that overlapped with VDR-induced recruitment of NCOR1 and gene transrepression. Taken together, these findings suggest that sustained corepressor interactions with nuclear-resident transcription factors may inappropriately transform transient-repressive histone states into more stable and repressive DNA methylation events.
PMCID: PMC3564435  PMID: 23087083
3.  The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing 
Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation and H3K4 hypermethylation in various cell types. They find clinical application as anti-epileptics and chemotherapeutic agents, but the pathways through which they operate remain unclear. Surprisingly, changes in gene expression caused by HDACi are often limited in extent and can be positive or negative. Here we have explored the ability of the clinically important HDACi valproic acid (VPA) to alter histone modification and gene expression, both globally and at specific genes, in mouse embryonic stem (ES) cells.
Microarray expression analysis of ES cells exposed to VPA (1 mM, 8 h), showed that only 2.4% of genes showed a significant, >1.5-fold transcriptional change. Of these, 33% were down-regulated. There was no correlation between gene expression and VPA-induced changes in histone acetylation or H3K4 methylation at gene promoters, which were usually minimal. In contrast, all Hoxb genes showed increased levels of H3K9ac after exposure to VPA, but much less change in other modifications showing bulk increases. VPA-induced changes were lost within 24 h of inhibitor removal. VPA significantly increased the low transcription of Hoxb4 and Hoxb7, but not other Hoxb genes. Expression of Hoxb genes increased in ES cells lacking functional Polycomb silencing complexes PRC1 and PRC2. Surprisingly, VPA caused no further increase in Hoxb transcription in these cells, except for Hoxb1, whose expression increased several fold. Retinoic acid (RA) increased transcription of all Hoxb genes in differentiating ES cells within 24 h, but thereafter transcription remained the same, increased progressively or fell progressively in a locus-specific manner.
Hoxb genes in ES cells are unusual in being sensitive to VPA, with effects on both cluster-wide and locus-specific processes. VPA increases H3K9ac at all Hoxb loci but significantly overrides PRC-mediated silencing only at Hoxb4 and Hoxb7. Hoxb1 is the only Hoxb gene that is further up-regulated by VPA in PRC-deficient cells. Our results demonstrate that VPA can exert both cluster-wide and locus-specific effects on Hoxb regulation.
PMCID: PMC3769143  PMID: 23634885
Hoxb genes; Valproic acid; Histone deacetylase; Polycomb repression; Mouse embryonic stem cells; Histone modification; Microarray expression analysis; Retinoic acid; Transcriptional activation
4.  Itga2b Regulation at the Onset of Definitive Hematopoiesis and Commitment to Differentiation 
PLoS ONE  2012;7(8):e43300.
Product of the Itga2b gene, CD41 contributes to hematopoietic stem cell (HSC) and megakaryocyte/platelet functions. CD41 expression marks the onset of definitive hematopoiesis in the embryo where it participates in regulating the numbers of multipotential progenitors. Key to platelet aggregation, CD41 expression also characterises their precursor, the megakaryocyte, and is specifically up regulated during megakaryopoiesis. Though phenotypically unique, megakaryocytes and HSC share numerous features, including key transcription factors, which could indicate common sub-regulatory networks. In these respects, Itga2b can serve as a paradigm to study features of both developmental-stage and HSC- versus megakaryocyte-specific regulations. By comparing different cellular contexts, we highlight a mechanism by which internal promoters participate in Itga2b regulation. A developmental process connects epigenetic regulation and promoter switching leading to CD41 expression in HSC. Interestingly, a similar process can be observed at the Mpl locus, which codes for another receptor that defines both HSC and megakaryocyte identities. Our study shows that Itga2b expression is controlled by lineage-specific networks and associates with H4K8ac in megakaryocyte or H3K27me3 in the multipotential hematopoietic cell line HPC7. Correlating with the decrease in H3K27me3 at the Itga2b Iocus, we find that following commitment to megakaryocyte differentiation, the H3K27 demethylase Jmjd3 up-regulation influences both Itga2b and Mpl expression.
PMCID: PMC3429474  PMID: 22952660
5.  Genes Are Often Sheltered from the Global Histone Hyperacetylation Induced by HDAC Inhibitors 
PLoS ONE  2012;7(3):e33453.
Histone deacetylase inhibitors (HDACi) are increasingly used as therapeutic agents, but the mechanisms by which they alter cell behaviour remain unclear. Here we use microarray expression analysis to show that only a small proportion of genes (∼9%) have altered transcript levels after treating HL60 cells with different HDACi (valproic acid, Trichostatin A, suberoylanilide hydroxamic acid). Different gene populations respond to each inhibitor, with as many genes down- as up-regulated. Surprisingly, HDACi rarely induced increased histone acetylation at gene promoters, with most genes examined showing minimal change, irrespective of whether genes were up- or down-regulated. Many genes seem to be sheltered from the global histone hyperacetyation induced by HDACi.
PMCID: PMC3316569  PMID: 22479401
6.  Elevated NCOR1 disrupts PPARα/γ signaling in prostate cancer and forms a targetable epigenetic lesion 
Carcinogenesis  2010;31(9):1650-1660.
The loss of anti-proliferative responsiveness in prostate cancer cell lines toward ligands for vitamin D receptor, retinoic acid receptors/retinoid X receptors and peroxisome proliferator activated receptor (PPAR)α/γ may entail underlying epigenetic events, as ligand insensitivity reflects significantly altered messenger RNA expression of corepressors and histone-modifying enzymes. Expression patterns were dependent on phases of the cell cycle and associated with repressed basal gene expression of vitamin D receptor and PPARα/γ target genes, for example CDKN1A [encodes p21(waf1/cip1)]. Elevated nuclear corepressor 1 (NCOR1) and nuclear corepressor 2/silencing mediator of retinoic acid and thyroid hormone receptor protein levels were detected in prostate cancer cell lines compared with non-malignant counterparts. Knockdown of the corepressor NCOR1 significantly elevated basal expression of a cohort of target genes, including CDKN1A. Both chemical [histone deacetylases inhibitor (HDACi)] and NCOR1 knockdown targeting enhanced anti-proliferative sensitivity toward PPARα/γ ligands in prostate cancer cell lines. Pursuing PPARα/γ signaling, microarray approaches were undertaken to identify pathways and genes regulated uniquely by a combination of PPARα/γ activation and HDAC inhibition. Again, HDACi and knockdown approaches demonstrated that elevated NCOR1 expression and activity distorted PPARα/γ gene targets centered on, for example cell cycle control, including CDKN1A and TGFBRAP1. Quantitative real time polymerase chain reaction validation and chromatin immunoprecipitation assays both confirmed that elevated NCOR1 disrupted the ability of PPARα/γ to regulate key target genes (CDKN1A and TGFBRAP1). Interrogation of these relationships in prostate cancer samples using principal component and partial correlation analyses established significant interdependent relationships between NCOR1–PPARα/γ and representative target genes, independently of androgen receptor expression. Therefore, we conclude that elevated NCOR1 distorts the actions of PPARα/γ selectively and generates a potential epigenetic lesion with diagnostic and prognostic significance.
PMCID: PMC2930800  PMID: 20466759
7.  A Systems Biology Approach Identifies Molecular Networks Defining Skeletal Muscle Abnormalities in Chronic Obstructive Pulmonary Disease 
PLoS Computational Biology  2011;7(9):e1002129.
Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.
Author Summary
Chronic Obstructive Pulmonary Disease (COPD) is a major life threatening disease of the lungs, characterized by airflow limitation and chronic inflammation. Progressive reduction of the body muscle mass is a condition linked to COPD that significantly decreases quality of life and survival. Physical exercise has been proposed as a therapeutic option but its utility is still a matter of debate. The mechanisms underlying muscle wasting are also still largely unknown. The results presented in this paper show that diseased muscles are largely unable to coordinate the expression of muscle remodelling and bioenergetics pathways and that the cause of this phenomena may be tissue hypoxia. These findings contrast with current hypotheses based on the role of chronic inflammation and show that a mechanism based on an oxygen driven, epigenetic control of these two important functions may be an important disease mechanism.
PMCID: PMC3164707  PMID: 21909251
8.  Epigenetic control of a VDR-governed feed-forward loop that regulates p21(waf1/cip1) expression and function in non-malignant prostate cells 
Nucleic Acids Research  2010;39(6):2045-2056.
In non-malignant RWPE-1 prostate epithelial cells signaling by the nuclear receptor Vitamin D Receptor (VDR, NR1I1) induces cell cycle arrest through targets including CDKN1A (encodes p21(waf1/cip1)). VDR dynamically induced individual histone modification patterns at three VDR binding sites (R1, 2, 3) on the CDKN1A promoter. The magnitude of these modifications was specific to each phase of the cell cycle. For example, H3K9ac enrichment occurred rapidly only at R2, whereas parallel accumulation of H3K27me3 occurred at R1; these events were significantly enriched in G1 and S phase cells, respectively. The epigenetic events appeared to allow VDR actions to combine with p53 to enhance p21(waf1/cip1) activation further. In parallel, VDR binding to the MCM7 gene induced H3K9ac enrichment associated with rapid mRNA up-regulation to generate miR-106b and consequently regulate p21(waf1/cip1) expression. We conclude that VDR binding site- and promoter-specific patterns of histone modifications combine with miRNA co-regulation to form a VDR-regulated feed-forward loop to control p21(waf1/cip1) expression and cell cycle arrest. Dissection of this feed-forward loop in a non-malignant prostate cell system illuminates mechanisms of sensitivity and therefore possible resistance in prostate and other VDR responsive cancers.
PMCID: PMC3064804  PMID: 21088000
9.  Immunostaining of modified histones defines high-level features of the human metaphase epigenome 
Genome Biology  2010;11(11):R110.
Immunolabeling of metaphase chromosome spreads can map components of the human epigenome at the single cell level. Previously, there has been no systematic attempt to explore the potential of this approach for epigenomic mapping and thereby to complement approaches based on chromatin immunoprecipitation (ChIP) and sequencing technologies.
By immunostaining and immunofluorescence microscopy, we have defined the distribution of selected histone modifications across metaphase chromosomes from normal human lymphoblastoid cells and constructed immunostained karyotypes. Histone modifications H3K9ac, H3K27ac and H3K4me3 are all located in the same set of sharply defined immunofluorescent bands, corresponding to 10- to 50-Mb genomic segments. Primary fibroblasts gave broadly the same banding pattern. Bands co-localize with regions relatively rich in genes and CpG islands. Staining intensity usually correlates with gene/CpG island content, but occasional exceptions suggest that other factors, such as transcription or SINE density, also contribute. H3K27me3, a mark associated with gene silencing, defines a set of bands that only occasionally overlap with gene-rich regions. Comparison of metaphase bands with histone modification levels across the interphase genome (ENCODE, ChIP-seq) shows a close correspondence for H3K4me3 and H3K27ac, but major differences for H3K27me3.
At metaphase the human genome is packaged as chromatin in which combinations of histone modifications distinguish distinct regions along the euchromatic chromosome arms. These regions reflect the high-level interphase distributions of some histone modifications, and may be involved in heritability of epigenetic states, but we also find evidence for extensive remodeling of the epigenome at mitosis.
PMCID: PMC3156949  PMID: 21078160
10.  Transcription-Independent Heritability of Induced Histone Modifications in the Mouse Preimplantation Embryo 
PLoS ONE  2009;4(6):e6086.
Enzyme-catalyzed, post-translational modifications of core histones have been implicated in the complex changes in gene expression that drive early mammalian development. However, until recently the small number of cells available from the preimplantation embryo itself has prevented quantitative analysis of histone modifications at key regulator genes. The possible involvement of histone modifications in the embryo's response to extracellular signals, or as determinants of cell fate or lineage progression, remains unclear. Here we describe the use of a recently-developed chromatin immunoprecipitation technique (CChIP) to assay histone modification levels at key regulator genes (Pou5f1, Nanog, Cdx2, Hoxb1, Hoxb9) as mouse embryos progress from 8-cell to blastocyst in culture. Only by the blastocyst stage, when the embryonic (Inner Cell Mass) and extra-embryonic (Trophoblast) lineages are compared, do we see the expected association between histone modifications previously linked to active and silent chromatin, and transcriptional state. To explore responses to an environmental signal, we exposed embryos to the histone deacetylase inhibitor, anti-epileptic and known teratogen valproic acid (VPA), during progression from 8-cell to morula stage. Such treatment increased H4 acetylation and H3 lysine 4 methylation at the promoters of Hoxb1 and Hoxb9, but not the promoters of Pou5f1, Nanog,Cdx2 or the housekeeping gene Gapdh. Despite the absence of detectable Hoxb transcription, these VPA-induced changes were heritable, following removal of the inhibitor, at least until the blastocyst stage. The selective hyperacetylation of Hoxb promoters in response to a histone deacetylase inhibitor, suggests that Hox genes have a higher turnover of histone acetates than other genes in the preimplantation embryo. To explain the heritability, through mitosis, of VPA-induced changes in histone modification at Hoxb promoters, we describe how an epigenetic feed-forward loop, based on cross-talk between H3 acetylation and H3K4 methylation, might generate a persistently increased steady-state level of histone acetylation in response to a transient signal.
PMCID: PMC2698989  PMID: 19564914
11.  Dosage Compensation in the Mouse Balances Up-Regulation and Silencing of X-Linked Genes 
PLoS Biology  2007;5(12):e326.
Dosage compensation in mammals involves silencing of one X chromosome in XX females and requires expression, in cis, of Xist RNA. The X to be inactivated is randomly chosen in cells of the inner cell mass (ICM) at the blastocyst stage of development. Embryonic stem (ES) cells derived from the ICM of female mice have two active X chromosomes, one of which is inactivated as the cells differentiate in culture, providing a powerful model system to study the dynamics of X inactivation. Using microarrays to assay expression of X-linked genes in undifferentiated female and male mouse ES cells, we detect global up-regulation of expression (1.4- to 1.6-fold) from the active X chromosomes, relative to autosomes. We show a similar up-regulation in ICM from male blastocysts grown in culture. In male ES cells, up-regulation reaches 2-fold after 2–3 weeks of differentiation, thereby balancing expression between the single X and the diploid autosomes. We show that silencing of X-linked genes in female ES cells occurs on a gene-by-gene basis throughout differentiation, with some genes inactivating early, others late, and some escaping altogether. Surprisingly, by allele-specific analysis in hybrid ES cells, we also identified a subgroup of genes that are silenced in undifferentiated cells. We propose that X-linked genes are silenced in female ES cells by spreading of Xist RNA through the X chromosome territory as the cells differentiate, with silencing times for individual genes dependent on their proximity to the Xist locus.
Author Summary
In organisms such as fruit flies and humans, major chromosomal differences exist between the sexes: females have two large, gene-rich X chromosomes, and males have one X and one small, gene-poor Y. Various strategies have evolved to balance X-linked gene expression between the single X and the autosomes, and between the sexes (a phenomenon called dosage compensation). In Drosophila melanogaster, expression from the male X is up-regulated approximately 2-fold, thereby balancing both X-to-autosome and female-to-male expression. In contrast, mammals silence one of the two female Xs in a process requiring the untranslated RNA product of the Xist gene. This balances female-to-male expression but leaves both sexes with only one functional X chromosome. Using mouse embryonic stem cells and microarray expression analysis, we found that dosage compensation in mice is more complex than previously thought, with X-linked genes up-regulated in both male and female cells so as to balance X-to-autosome expression. As differentiation proceeds, female cells show progressive loss of expression from one of the two initially active Xs. Surprisingly, silencing occurs on a gene-by-gene basis over 2–3 week of differentiation; some genes escape altogether, whereas a subgroup of genes, often adjacent to the Xist locus, is silenced even in undifferentiated cells. We propose that female X-linked genes are silenced by progressive spreading of Xist RNA through the X chromosome territory as differentiation proceeds.
In mouse embryonic stem cells, X:autosome expression balance is achieved by up-regulating X-linked genes in both sexes and gene-by-gene silencing on one female X chromosome.
PMCID: PMC2121114  PMID: 18076287
12.  Intergenic Transcription, Cell-Cycle and the Developmentally Regulated Epigenetic Profile of the Human Beta-Globin Locus 
PLoS ONE  2007;2(7):e630.
Several lines of evidence have established strong links between transcriptional activity and specific post-translation modifications of histones. Here we show using RNA FISH that in erythroid cells, intergenic transcription in the human β-globin locus occurs over a region of greater than 250 kb including several genes in the nearby olfactory receptor gene cluster. This entire region is transcribed during S phase of the cell cycle. However, within this region there are ∼20 kb sub-domains of high intergenic transcription that occurs outside of S phase. These sub-domains are developmentally regulated and enriched with high levels of active modifications primarily to histone H3. The sub-domains correspond to the β-globin locus control region, which is active at all developmental stages in erythroid cells, and the region flanking the developmentally regulated, active globin genes. These results correlate high levels of non-S phase intergenic transcription with domain-wide active histone modifications to histone H3.
PMCID: PMC1910613  PMID: 17637845
13.  DNA Methylation Is Linked to Deacetylation of Histone H3, but Not H4, on the Imprinted Genes Snrpn and U2af1-rs1 
Molecular and Cellular Biology  2001;21(16):5426-5436.
The relationship between DNA methylation and histone acetylation at the imprinted mouse genes U2af1-rs1 and Snrpn is explored by chromatin immunoprecipitation (ChIP) and resolution of parental alleles using single-strand conformational polymorphisms. The U2af1-rs1 gene lies within a differentially methylated region (DMR), while Snrpn has a 5′ DMR (DMR1) with sequences homologous to the imprinting control center of the Prader-Willi/Angelman region. For both DMR1 of Snrpn and the 5′ untranslated region (5′-UTR) and 3′-UTR of U2af1-rs1, the methylated and nonexpressed maternal allele was underacetylated, relative to the paternal allele, at all H3 lysines tested (K14, K9, and K18). For H4, underacetylation of the maternal allele was exclusively (U2af1-rs1) or predominantly (Snrpn) at lysine 5. Essentially the same patterns of differential acetylation were found in embryonic stem (ES) cells, embryo fibroblasts, and adult liver from F1 mice and in ES cells from mice that were dipaternal or dimaternal for U2af1-rs1. In contrast, in a region within Snrpn that has biallelic methylation in the cells and tissues analyzed, the paternal (expressed) allele showed relatively increased acetylation of H4 but not of H3. The methyl-CpG-binding-domain (MBD) protein MeCP2 was found, by ChIP, to be associated exclusively with the maternal U2af1-rs1 allele. To ask whether DNA methylation is associated with histone deacetylation, we produced mice with transgene-induced methylation at the paternal allele of U2af1-rs1. In these mice, H3 was underacetylated across both the parental U2af1-rs1 alleles whereas H4 acetylation was unaltered. Collectively, these data are consistent with the hypothesis that CpG methylation leads to deacetylation of histone H3, but not H4, through a process that involves selective binding of MBD proteins.
PMCID: PMC87265  PMID: 11463825

Results 1-13 (13)