Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  VEGF in the lung: a role for novel isoforms 
Vascular endothelial cell growth factor (VEGF) is a potent mitogen and permogen that increases in the plasma and decreases in the alveolar space in respiratory diseases such as acute respiratory distress syndrome (ARDS). This observation has led to controversy over the role of this potent molecule in lung physiology and disease. We hypothesized that some of the VEGF previously detected in normal lung may be of the anti-angiogenic family (VEGFxxxb) with significant potential effects on VEGF bioactivity. VEGFxxxb protein expression was assessed by indirect immunohistochemistry in normal and ARDS tissue. Expression of VEGFxxxb was also detected by immunoblotting in normal lung tissue, primary human alveolar type II (ATII) cells, and bronchoalveolar lavage (BAL) fluid in normal subjects and by ELISA in normal, “at risk,” and ARDS subjects. The effect of VEGF165 and VEGF165b on both human primary endothelial cells and alveolar epithelial cell proliferation was assessed by [3H]thymidine uptake. We found that VEGF165b was widely expressed in normal healthy lung tissue but is reduced in ARDS lung. VEGF121b and VEGF165b were present in whole lung, BAL, and ATII lysate. The proliferative effect of VEGF165 on both human primary endothelial cells and human alveolar epithelial cells was significantly inhibited by VEGF165b (P < 0.01). These data demonstrate that the novel VEGFxxxb family members are expressed in normal lung and are reduced in ARDS. A specific functional effect on primary human endothelial and alveolar epithelial cells has also been shown. These data suggest that the VEGFxxxb family may have a role in repair after lung injury.
PMCID: PMC2886605  PMID: 20228180
ARDS; vascular endothelial growth factor
2.  Detection of VEGF-Axxxb Isoforms in Human Tissues 
PLoS ONE  2013;8(7):e68399.
Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.
PMCID: PMC3729684  PMID: 23935865
4.  The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study 
BMC Medical Genetics  2011;12:24.
Genetic factors are known to contribute to COPD susceptibility and these factors are not fully understood. Conflicting results have been reported for many genetic studies of candidate genes based on their role in the disease. Genome-wide association studies in combination with expression profiling have identified a number of new candidates including IREB2. A meta-analysis has implicated transforming growth factor beta-1 (TGFbeta1) as a contributor to disease susceptibility.
We have examined previously reported associations in both genes in a collection of 1017 white COPD patients and 912 non-diseased smoking controls. Genotype information was obtained for seven SNPs in the IREB2 gene, and for four SNPs in the TGFbeta1 gene. Allele and genotype frequencies were compared between COPD cases and controls, and odds ratios were calculated. The analysis was adjusted for age, sex, smoking and centre, including interactions of age, sex and smoking with centre.
Our data replicate the association of IREB2 SNPs in association with COPD for SNP rs2568494, rs2656069 and rs12593229 with respective adjusted p-values of 0.0018, 0.0039 and 0.0053. No significant associations were identified for TGFbeta1.
These studies have therefore confirmed that the IREB2 locus is a contributor to COPD susceptibility and suggests a new pathway in COPD pathogenesis invoking iron homeostasis.
PMCID: PMC3047296  PMID: 21320324
5.  Association of MMP - 12 polymorphisms with severe and very severe COPD: A case control study of MMPs - 1, 9 and 12 in a European population 
BMC Medical Genetics  2010;11:7.
Genetic factors play a role in chronic obstructive pulmonary disease (COPD) but are poorly understood. A number of candidate genes have been proposed on the basis of the pathogenesis of COPD. These include the matrix metalloproteinase (MMP) genes which play a role in tissue remodelling and fit in with the protease - antiprotease imbalance theory for the cause of COPD. Previous genetic studies of MMPs in COPD have had inadequate coverage of the genes, and have reported conflicting associations of both single nucleotide polymorphisms (SNPs) and SNP haplotypes, plausibly due to under-powered studies.
To address these issues we genotyped 26 SNPs, providing comprehensive coverage of reported SNP variation, in MMPs- 1, 9 and 12 from 977 COPD patients and 876 non-diseased smokers of European descent and evaluated their association with disease singly and in haplotype combinations. We used logistic regression to adjust for age, gender, centre and smoking history.
Haplotypes of two SNPs in MMP-12 (rs652438 and rs2276109), showed an association with severe/very severe disease, corresponding to GOLD Stages III and IV.
Those with the common A-A haplotype for these two SNPs were at greater risk of developing severe/very severe disease (p = 0.0039) while possession of the minor G variants at either SNP locus had a protective effect (adjusted odds ratio of 0.76; 95% CI 0.61 - 0.94). The A-A haplotype was also associated with significantly lower predicted FEV1 (42.62% versus 44.79%; p = 0.0129). This implicates haplotypes of MMP-12 as modifiers of disease severity.
PMCID: PMC2820470  PMID: 20078883
6.  Vascular endothelial growth factor receptor and coreceptor expression in human acute respiratory distress syndrome☆☆☆ 
Journal of Critical Care  2009;24(2):236-242.
Acute respiratory distress syndrome (ARDS) is characterized by the development of noncardiogenic pulmonary edema, which has been related to the bioactivity of vascular endothelial growth factor (VEGF). Vascular endothelial growth factor receptors and coreceptors regulate this bioactivity. We hypothesized VEGF receptors 1 and 2 (VEGFR1, VEGFR2) and coreceptor neuropilin-1 (NRP-1) would be expressed in human lung tissue with a significant change in expression in ARDS lung.
Archival “normal” (no lung pathology and non-ARDS), “early” (within 48 hours), and “later” (after day 7) ARDS lung-tissue sections (n = 5) were immunostained for VEGFR1, VEGFR2, and NRP-1 from human subjects (n = 4). Staining was assessed densitometrically using Histometrix software.
VEGFR1, VEGFR2, and NRP-1 were expressed on both sides of the alveolar-capillary membrane in both normal and ARDS human lung tissue. In later ARDS, there was a significant up-regulation of VEGFR1 and VEGFR2 versus normal and early ARDS (P < .0001). Neuropilin-1 was down-regulated in early ARDS versus normal lung (P < .05), with normalization in later ARDS (P < .001).
Differential temporal VEGFR1, VEGFR2, and NRP-1 up-regulation occurs in human ARDS, providing evidence of further functional regulation of VEGF bioactivity via VEGFR2 consistent with a protective role for VEGF in lung injury recovery. The mechanisms behind these observations remain to be clarified.
PMCID: PMC2698064  PMID: 19327291
Acute respiratory distress syndrome; Vascular endothelial growth factor, Neuropilin; Receptors
7.  Vascular Endothelial Growth Factor (VEGF) isoform expression and activity in human and murine lung injury 
Respiratory Research  2009;10(1):27.
The properties of vascular endothelial growth factor (VEGF) as a potent vascular permogen and mitogen have led to investigation of its potential role in lung injury. Alternate spliced VEGF transcript generates several isoforms with potentially differing functions. The purpose of this study was to determine VEGF isoform expression and source in normal and ARDS subjects and investigate the expression and regulation of VEGF isoforms by human alveolar type 2 (ATII) cells.
VEGF protein expression was assessed immunohistochemically in archival normal and ARDS human lung tissue. VEGF isoform mRNA expression was assessed in human and murine lung tissue. Purified ATII cells were cultured with proinflammatory cytokines prior to RNA extraction/cell supernatant sampling/proliferation assay.
Measurements and Main Results
VEGF was expressed on alveolar epithelium, vascular endothelium and alveolar macrophages in normal and ARDS human lung tissue. Increases in VEGF expression were detected in later ARDS in comparison to both normal subjects and early ARDS (p < 0.001). VEGF121, VEGF165 and VEGF189 isoform mRNA expression increased in later ARDS (p < 0.05). The ratio of soluble to cell-associated isoforms was lower in early ARDS than normal subjects and later ARDS and also in murine lung injury. ATII cells constitutionally produced VEGF165 and VEGF121 protein which was increased by LPS (p < 0.05). VEGF165 upregulated ATII cell proliferation (p < 0.001) that was inhibited by soluble VEGF receptor 1 (sflt) (p < 0.05).
These data demonstrate that changes in VEGF isoform expression occur in ARDS which may be related to their production by and mitogenic effect on ATII cells; with potentially significant clinical consequences.
PMCID: PMC2674417  PMID: 19358726

Results 1-7 (7)