Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Biomedical research in a Digital Health Framework 
Journal of Translational Medicine  2014;12(Suppl 2):S10.
This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements - data and tools - of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the support of information and communication technologies, a personal health folder (PHF) and a biomedical research environment (DHF-research). Details on the functional requirements and necessary components of the DHF-research are extensively presented. Finally, the specifics of the building blocks strategy for deployment of the DHF, as well as the steps toward adoption are analyzed. The proposed architectural solutions and implementation steps constitute a pivotal strategy to foster and enable 4P medicine (Predictive, Preventive, Personalized and Participatory) in practice and should provide a head start to any community and institution currently considering to implement a biomedical research platform.
PMCID: PMC4255881  PMID: 25472554
Biomedical Research; Chronic care; Clinical Decision Support Systems; Integrated Health Care Systems; Patient Decision Support Systems; Personal Health Folder
2.  Chronic Obstructive Pulmonary Disease heterogeneity: challenges for health risk assessment, stratification and management 
Journal of Translational Medicine  2014;12(Suppl 2):S3.
Background and hypothesis
Heterogeneity in clinical manifestations and disease progression in Chronic Obstructive Pulmonary Disease (COPD) lead to consequences for patient health risk assessment, stratification and management. Implicit with the classical "spill over" hypothesis is that COPD heterogeneity is driven by the pulmonary events of the disease. Alternatively, we hypothesized that COPD heterogeneities result from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering, each of them with their own dynamics.
Objective and method
To explore the potential of a systems analysis of COPD heterogeneity focused on skeletal muscle dysfunction and on co-morbidity clustering aiming at generating predictive modeling with impact on patient management. To this end, strategies combining deterministic modeling and network medicine analyses of the Biobridge dataset were used to investigate the mechanisms of skeletal muscle dysfunction. An independent data driven analysis of co-morbidity clustering examining associated genes and pathways was performed using a large dataset (ICD9-CM data from Medicare, 13 million people). Finally, a targeted network analysis using the outcomes of the two approaches (skeletal muscle dysfunction and co-morbidity clustering) explored shared pathways between these phenomena.
(1) Evidence of abnormal regulation of skeletal muscle bioenergetics and skeletal muscle remodeling showing a significant association with nitroso-redox disequilibrium was observed in COPD; (2) COPD patients presented higher risk for co-morbidity clustering than non-COPD patients increasing with ageing; and, (3) the on-going targeted network analyses suggests shared pathways between skeletal muscle dysfunction and co-morbidity clustering.
The results indicate the high potential of a systems approach to address COPD heterogeneity. Significant knowledge gaps were identified that are relevant to shape strategies aiming at fostering 4P Medicine for patients with COPD.
PMCID: PMC4255905  PMID: 25472887
Chronic diseases; COPD; Disease heterogeneity; Integrated Care; Predictive Medicine; Redox disequilibrium; Systems Medicine; VO2max
3.  Systemic Inflammatory Response to Smoking in Chronic Obstructive Pulmonary Disease: Evidence of a Gender Effect 
PLoS ONE  2014;9(5):e97491.
Tobacco smoking is the main risk factor of chronic obstructive pulmonary disease (COPD) but not all smokers develop the disease. An abnormal pulmonary and systemic inflammatory response to smoking is thought to play a major pathogenic role in COPD, but this has never been tested directly.
We studied the systemic biomarker and leukocyte transcriptomic response (Affymetrix microarrays) to smoking exposure in 10 smokers with COPD and 10 smokers with normal spirometry. We also studied 10 healthy never smokers (not exposed to smoking) as controls. Because some aspects of COPD may differ in males and females, and the inflammatory response to other stressors (infection) might be different in man and women, we stratified participant recruitment by sex. Differentially expressed genes were validated by q-PCR. Ontology enrichment was evaluated and interaction networks inferred.
Principal component analysis identified sex differences in the leukocyte transcriptomic response to acute smoking. In both genders, we identified genes that were differentially expressed in response to smoking exclusively in COPD patients (COPD related signature) or smokers with normal spirometry (Smoking related signature), their ontologies and interaction networks.
The use of an experimental intervention (smoking exposure) to investigate the transcriptomic response of peripheral leukocytes in COPD is a step beyond the standard case-control transcriptomic profiling carried out so far, and has facilitated the identification of novel COPD and Smoking expression related signatures which differ in males and females.
PMCID: PMC4022517  PMID: 24830457
4.  Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies 
BMC Genomics  2014;15:91.
Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays.
We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression.
Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required.
PMCID: PMC3937154  PMID: 24484525
Gene expression; Microarrays; Bioinformatics; Mitochondrial DNA; Mitochondrial DNA depletion; Mitochondrial encephalomyopathy; Thymidine kinase 2; Skeletal muscle; p53; Apoptosis; GDF-15
5.  Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20 monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma 
Oncotarget  2014;5(3):726-739.
Mantle cell lymphoma (MCL) is considered one of the most challenging lymphoma, with limited responses to current therapies. Acadesine, a nucleoside analogue has shown antitumoral effects in different preclinical cancer models as well as in a recent phase I/II clinical trial conducted in patients with chronic lymphocytic leukemia. Here we observed that acadesine exerted a selective antitumoral activity in the majority of MCL cell lines and primary MCL samples, independently of adverse cytogenetic factors. Moreover, acadesine was highly synergistic, both in vitro and in vivo, with the anti-CD20 monoclonal antibody rituximab, commonly used in combination therapy for MCL. Gene expression profiling analysis in harvested tumors suggested that acadesine modulates immune response, actin cytoskeleton organization and metal binding, pointing out a substantial impact on metabolic processes by the nucleoside analog. Rituximab also induced changes on metal binding and immune responses. The combination of both drugs enhanced the gene signature corresponding to each single agent, showing an enrichment of genes involved in inflammation, metabolic stress, apoptosis and proliferation. These effects could be important as aberrant apoptotic and proinflammatory pathways play a significant role in the pathogenesis of MCL. In summary, our results suggest that acadesine exerts a cytotoxic effect in MCL in combination with rituximab, by decreasing the proliferative and survival signatures of the disease, thus supporting the clinical examination of this strategy in MCL patients.
PMCID: PMC3996675  PMID: 24519895
Acadesine; rituximab mantle cell lymphoma; xenograft mouse model
6.  Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets 
PLoS ONE  2013;8(10):e77430.
Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.
PMCID: PMC3819505  PMID: 24223098
7.  A Systems Biology Approach Identifies Molecular Networks Defining Skeletal Muscle Abnormalities in Chronic Obstructive Pulmonary Disease 
PLoS Computational Biology  2011;7(9):e1002129.
Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.
Author Summary
Chronic Obstructive Pulmonary Disease (COPD) is a major life threatening disease of the lungs, characterized by airflow limitation and chronic inflammation. Progressive reduction of the body muscle mass is a condition linked to COPD that significantly decreases quality of life and survival. Physical exercise has been proposed as a therapeutic option but its utility is still a matter of debate. The mechanisms underlying muscle wasting are also still largely unknown. The results presented in this paper show that diseased muscles are largely unable to coordinate the expression of muscle remodelling and bioenergetics pathways and that the cause of this phenomena may be tissue hypoxia. These findings contrast with current hypotheses based on the role of chronic inflammation and show that a mechanism based on an oxygen driven, epigenetic control of these two important functions may be an important disease mechanism.
PMCID: PMC3164707  PMID: 21909251
8.  Knowledge management for systems biology a general and visually driven framework applied to translational medicine 
BMC Systems Biology  2011;5:38.
To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory.
To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data.
We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
PMCID: PMC3060864  PMID: 21375767
9.  Strain-specific spleen remodelling in Plasmodium yoelii infections in Balb/c mice facilitates adherence and spleen macrophage-clearance escape 
Cellular Microbiology  2011;13(1):109-122.
Knowledge of the dynamic features of the processes driven by malaria parasites in the spleen is lacking. To gain insight into the function and structure of the spleen in malaria, we have implemented intravital microscopy and magnetic resonance imaging of the mouse spleen in experimental infections with non-lethal (17X) and lethal (17XL) Plasmodium yoelii strains. Noticeably, there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with 17X. Moreover, these differences were associated with the formation of a strain-specific induced spleen tissue barrier of fibroblastic origin, with red pulp macrophage-clearance evasion and with adherence of infected red blood cells to this barrier. Our data suggest that in this reticulocyte-prone non-lethal rodent malaria model, passage through the spleen is different from what is known in other Plasmodium species and open new avenues for functional/structural studies of this lymphoid organ in malaria.
PMCID: PMC3228402  PMID: 20923452

Results 1-9 (9)