PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Air travel in women with lymphangioleiomyomatosis 
Thorax  2006;62(2):176-180.
Background and objective
The safety of air travel in patients with pneumothorax‐prone pulmonary diseases, such as lymphangioleiomyomatosis (LAM), has not been studied to any great extent. A questionnaire‐based evaluation of air travel in patients with LAM was conducted to determine experiences aboard commercial aircraft.
Methods
A survey was sent to women listed in the US LAM Foundation registry (n = 389) and the UK LAM Action registry (n = 59) to assess air travel, including problems occurring during flight. Women reporting a pneumothorax in flight were followed up to ascertain further details about the incident.
Results
327 (73%) women completed the survey. 308 women answered the travel section, of whom 276 (90%) had “ever” travelled by aeroplane for a total of 454 flights. 95 (35%) women had been advised by their doctor to avoid air travel. Adverse events reported included shortness of breath (14%), pneumothorax (2%, 8/10 confirmed by chest radiograph), nausea or dizziness (8%), chest pain (12%), unusual fatigue (11%), oxygen desaturation (8%), headache (9%), blue hands (2%), haemoptysis (0.4%) and anxiety (22%). 5 of 10 patients with pneumothorax had symptoms that began before the flight: 2 occurred during cruising altitude, 2 soon after landing and 1 not known. The main symptoms were severe chest pain and shortness of breath.
Discussion and conclusion
Adverse effects occurred during air travel in patients with LAM, particularly dyspnoea and chest pain. Hypoxaemia and pneumothorax were reported. The decision to travel should be individualised; patients with unexplained shortness of breath or chest pain before scheduled flights should not board. Patients with borderline oxygen saturations on the ground should be evaluated for supplemental oxygen therapy during flight. Although many women had been advised not to travel by air, most travelled without the occurrence of serious adverse effects.
doi:10.1136/thx.2006.058537
PMCID: PMC2111263  PMID: 17040934
2.  Clinical utility of diagnostic guidelines and putative biomarkers in lymphangioleiomyomatosis 
Respiratory Research  2012;13(1):34.
Background
Lymphangioleiomyomatosis is a rare disease occurring almost exclusively in women. Diagnosis often requires surgical biopsy and the clinical course varies between patients with no predictors of progression. We evaluated recent diagnostic guidelines, clinical features and serum biomarkers as diagnostic and prognostic tools.
Methods
Serum vascular endothelial growth factor-D (VEGF-D), angiotensin converting enzyme (ACE), matrix metalloproteinases (MMP) -2 and -9, clinical phenotype, thoracic and abdominal computerised tomography, lung function and quality of life were examined in a cohort of 58 patients. 32 healthy female controls had serum biomarkers measured.
Results
Serum VEGF-D, ACE and total MMP-2 levels were elevated in patients. VEGF-D was the strongest discriminator between patients and controls (median = 1174 vs. 332 pg/ml p < 0.0001 with an area under the receiver operating characteristic curve of 0.967, 95% CI 0.93-1.01). Application of European Respiratory Society criteria allowed a definite diagnosis without biopsy in 69%. Adding VEGF-D measurement to ERS criteria further reduced the need for biopsy by 10%. VEGF-D was associated with lymphatic involvement (p = 0.017) but not the presence of angiomyolipomas.
Conclusions
Combining ERS criteria and serum VEGF-D reduces the need for lung biopsy in LAM. VEGF-D was associated with lymphatic disease but not lung function.
doi:10.1186/1465-9921-13-34
PMCID: PMC3431996  PMID: 22513045
VEGF-D; Matrix metalloproteinase; Angiotensin converting enzyme; ERS LAM guidelines
3.  Association of MMP - 12 polymorphisms with severe and very severe COPD: A case control study of MMPs - 1, 9 and 12 in a European population 
BMC Medical Genetics  2010;11:7.
Background
Genetic factors play a role in chronic obstructive pulmonary disease (COPD) but are poorly understood. A number of candidate genes have been proposed on the basis of the pathogenesis of COPD. These include the matrix metalloproteinase (MMP) genes which play a role in tissue remodelling and fit in with the protease - antiprotease imbalance theory for the cause of COPD. Previous genetic studies of MMPs in COPD have had inadequate coverage of the genes, and have reported conflicting associations of both single nucleotide polymorphisms (SNPs) and SNP haplotypes, plausibly due to under-powered studies.
Methods
To address these issues we genotyped 26 SNPs, providing comprehensive coverage of reported SNP variation, in MMPs- 1, 9 and 12 from 977 COPD patients and 876 non-diseased smokers of European descent and evaluated their association with disease singly and in haplotype combinations. We used logistic regression to adjust for age, gender, centre and smoking history.
Results
Haplotypes of two SNPs in MMP-12 (rs652438 and rs2276109), showed an association with severe/very severe disease, corresponding to GOLD Stages III and IV.
Conclusions
Those with the common A-A haplotype for these two SNPs were at greater risk of developing severe/very severe disease (p = 0.0039) while possession of the minor G variants at either SNP locus had a protective effect (adjusted odds ratio of 0.76; 95% CI 0.61 - 0.94). The A-A haplotype was also associated with significantly lower predicted FEV1 (42.62% versus 44.79%; p = 0.0129). This implicates haplotypes of MMP-12 as modifiers of disease severity.
doi:10.1186/1471-2350-11-7
PMCID: PMC2820470  PMID: 20078883
4.  The Role of Inflammation Resolution Speed in Airway Smooth Muscle Mass Accumulation in Asthma: Insight from a Theoretical Model 
PLoS ONE  2014;9(3):e90162.
Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM) mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.
doi:10.1371/journal.pone.0090162
PMCID: PMC3954558  PMID: 24632688
5.  Extra-Cellular Matrix Proteins Induce Matrix Metalloproteinase-1 (MMP-1) Activity and Increase Airway Smooth Muscle Contraction in Asthma 
PLoS ONE  2014;9(2):e90565.
Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM) deposition. Matrix metalloproteinase-1 (MMP-1) is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM) and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms.
doi:10.1371/journal.pone.0090565
PMCID: PMC3938782  PMID: 24587395

Results 1-5 (5)