PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (44)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Sperm competition risk generates phenotypic plasticity in ovum fertilizability 
Theory predicts that sperm competition will generate sexual conflict that favours increased ovum defences against polyspermy. A recent study on house mice has shown that ovum resistance to fertilization coevolves in response to increased sperm fertilizing capacity. However, the capacity for the female gamete to adjust its fertilizability as a strategic response to sperm competition risk has never, to our knowledge, been studied. We sourced house mice (Mus domesticus) from natural populations that differ in the level of sperm competition and sperm fertilizing capacity, and manipulated the social experience of females during their sexual development to simulate conditions of either a future ‘risk’ or ‘no risk’ of sperm competition. Consistent with coevolutionary predictions, we found lower fertilization rates in ova produced by females from a high sperm competition population compared with ova from a low sperm competition population, indicating that these populations are divergent in the fertilizability of their ova. More importantly, females exposed to a ‘risk’ of sperm competition produced ova that had greater resistance to fertilization than ova produced by females reared in an environment with ‘no risk’. Consequently, we show that variation in sperm competition risk during development generates phenotypic plasticity in ova fertilizability, which allows females to prepare for prevailing conditions during their reproductive life.
doi:10.1098/rspb.2013.2097
PMCID: PMC3813334  PMID: 24132308
sexual conflict; cryptic female choice; polyspermy; house mice; cumulus oophorus; zona pellucida
2.  No Evidence of Conpopulation Sperm Precedence between Allopatric Populations of House Mice 
PLoS ONE  2014;9(10):e107472.
Investigations into the evolution of reproductive barriers have traditionally focused on closely related species, and the prevalence of conspecific sperm precedence. The effectiveness of conspecific sperm precedence at limiting gene exchange between species suggests that gametic isolation is an important component of reproductive isolation. However, there is a paucity of tests for evidence of sperm precedence during the earlier stages of divergence, for example among isolated populations. Here, we sourced individuals from two allopatric populations of house mice (Mus domesticus) and performed competitive in vitro fertilisation assays to test for conpopulation sperm precedence specifically at the gametic level. We found that ova population origin did not influence the outcome of the sperm competitions, and thus provide no evidence of conpopulation or heteropopulation sperm precedence. Instead, we found that males from a population that had evolved under a high level of postcopulatory sexual selection consistently outcompeted males from a population that had evolved under a relatively lower level of postcopulatory sexual selection. We standardised the number of motile sperm of each competitor across the replicate assays. Our data therefore show that competitive fertilizing success was directly attributable to differences in sperm fertilizing competence.
doi:10.1371/journal.pone.0107472
PMCID: PMC4189782  PMID: 25295521
3.  Sperm Competition in Humans: Mate Guarding Behavior Negatively Correlates with Ejaculate Quality 
PLoS ONE  2014;9(9):e108099.
In species where females mate with multiple males, the sperm from these males must compete to fertilise available ova. Sexual selection from sperm competition is expected to favor opposing adaptations in males that function either in the avoidance of sperm competition (by guarding females from rival males) or in the engagement in sperm competition (by increased expenditure on the ejaculate). The extent to which males may adjust the relative use of these opposing tactics has been relatively neglected. Where males can successfully avoid sperm competition from rivals, one might expect a decrease in their expenditure on tactics for the engagement in sperm competition and vice versa. In this study, we examine the relationship between mate guarding and ejaculate quality using humans as an empirical model. We found that men who performed fewer mate guarding behaviors produced higher quality ejaculates, having a greater concentration of sperm, a higher percentage of motile sperm and sperm that swam faster and less erratically. These effects were found independent of lifestyle factors or factors related to male quality. Our findings suggest that male expenditure on mate guarding and on the ejaculate may represent alternative routes to paternity assurance in humans.
doi:10.1371/journal.pone.0108099
PMCID: PMC4176016  PMID: 25250582
4.  Why Do Female Callosobruchus maculatus Kick Their Mates? 
PLoS ONE  2014;9(4):e95747.
Sexual conflict is now recognised as an important driver of sexual trait evolution. However, due to their variable outcomes and effects on other fitness components, the detection of sexual conflicts on individual traits can be complicated. This difficulty is exemplified in the beetle Callosobruchus maculatus, where longer matings increase the size of nutritious ejaculates but simultaneously reduce female future receptivity. While previous studies show that females gain direct benefits from extended mating duration, females show conspicuous copulatory kicking behaviour, apparently to dislodge mating males prematurely. We explore the potential for sexual conflict by comparing several fitness components and remating propensity in pairs of full sibling females where each female mated with a male from an unrelated pair of full sibling males. For one female, matings were terminated at the onset of kicking, whereas the other’s matings remained uninterrupted. While fecundity (number of eggs) was similar between treatments, uninterrupted matings enhanced adult offspring numbers and fractionally also longevity. However, females whose matings were interrupted at the onset of kicking exhibited an increased propensity to remate. Since polyandry can benefit female fitness in this species, we argue that kicking, rather than being maladaptive, may indicate that females prefer remating over increased ejaculate size. It may thus be difficult to assess the presence of sexual conflict over contested traits such as mating duration when females face a trade off between direct benefits gained from one mating and indirect benefits from additional matings.
doi:10.1371/journal.pone.0095747
PMCID: PMC3994112  PMID: 24752530
5.  Sex-biased mortality associated with inbreeding in Drosophila melanogaster 
Background
One proposed consequence of inbreeding is a skewed sex ratio arising from sex specific mortality in the homogametic sex caused by inbreeding on the sex chromosome. However, recent work suggests that random distortions in sex ratio due to autosomal inbreeding may be of greater importance. In this study, we investigate the effect of biologically realistic levels of inbreeding on sex ratio and sex specific mortality in Drosophila melanogaster. We use two pedigree crossing designs to either maximise or minimise inbreeding on the X-chromosome whilst producing identical autosomal inbreeding.
Results
We found increased female mortality and male biased sex ratios associated with inbreeding in our high, but not low, X-inbreeding pedigree. While our results are more consistent with being driven by inbreeding on the X-chromosome than on the autosomes, the marked difference between treatments does not fit closely the expectations of either model.
Conclusions
Our results are only partly consistent with the hypothesis that inbreeding on the X-chromosome can cause greater fitness reductions in the homogametic sex. Whilst the results of our study are not conclusive, they suggest that directional distortions in sex ratio due to inbreeding can occur, and highlight the need for further investigation on this topic.
doi:10.1186/1471-2148-14-51
PMCID: PMC4234498  PMID: 24636623
6.  Women can judge sexual unfaithfulness from unfamiliar men's faces 
Biology Letters  2013;9(1):20120908.
We routinely form impressions of people from their faces, and these impressions sometimes contain a kernel of truth. Impressions of trustworthiness are central to interpersonal relationships, but their accuracy remains contentious. Here, we investigated whether sexual trustworthiness (faithfulness) can be accurately judged from opposite-sex strangers' faces. Women's ratings of men's unfaithfulness showed small–moderate correlations with men's past unfaithfulness (cheating, poaching). Women used masculinity as a valid cue to unfaithfulness. Men's unfaithfulness ratings showed small, non-significant correlations with unfaithfulness, although formal tests for sex differences yielded equivocal results. Women were less likely than men to erroneously classify unfaithful individuals as faithful. We conclude that impressions of sexual faithfulness from faces have a kernel of truth, at least for women, and that they may help people assess the quality of potential mates about whom they have minimal behavioural information.
doi:10.1098/rsbl.2012.0908
PMCID: PMC3565506  PMID: 23221873
face perception; infidelity; trustworthiness; evolutionary psychology
7.  Heat stress but not inbreeding affects offensive sperm competitiveness in Callosobruchus maculatus 
Ecology and Evolution  2013;3(9):2859-2866.
Environmental and genetic stress have well-known detrimental effects on ejaculate quality, but their concomitant effect on male fitness remains poorly understood. We used competitive fertilization assays to expose the effects of stress on offensive sperm competitive ability in the beetle Callosobruchus maculatus, a species where ejaculates make up more than 5% of male body mass. To examine the effects of environmental and genetic stress, males derived from outcrosses or sib matings were heat shocked at 50°C for 50 min during the pupal stage, while their siblings were maintained at a standard rearing temperature of 28°C. Heat-shocked males achieved only half the offensive paternity success of their siblings. While this population exhibited inbreeding depression in body size, sperm competitiveness was unaffected by inbreeding, nor did the effect of heat shock stress on sperm competitiveness depend on inbreeding status. In contrast, pupal emergence success was increased by 34% among heat-stressed individuals, regardless of their inbreeding status. Heat-shocked males' ejaculate size was 19% reduced, but they exhibited 25% increased mating duration in single mating trials. Our results highlight both the importance of stress in postcopulatory sexual selection, and the variability among stressors in affecting male fitness.
doi:10.1002/ece3.667
PMCID: PMC3790535  PMID: 24101978
Ejaculate size; heat shock; Hsp; inbreeding; paternity; sperm competition; stress
8.  Experimental evolution reveals trade-offs between mating and immunity 
Biology Letters  2013;9(4):20130262.
Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations.
doi:10.1098/rsbl.2013.0262
PMCID: PMC3730636  PMID: 23720521
sexual selection; sperm competition; immune function
9.  Loss of the Nuclear Receptor Corepressor SLIRP Compromises Male Fertility 
PLoS ONE  2013;8(8):e70700.
Nuclear receptors (NRs) and their coregulators play fundamental roles in initiating and directing gene expression influencing mammalian reproduction, development and metabolism. SRA stem Loop Interacting RNA-binding Protein (SLIRP) is a Steroid receptor RNA Activator (SRA) RNA-binding protein that is a potent repressor of NR activity. SLIRP is present in complexes associated with NR target genes in the nucleus; however, it is also abundant in mitochondria where it affects mitochondrial mRNA transcription and energy turnover. In further characterisation studies, we observed SLIRP protein in the testis where its localization pattern changes from mitochondrial in diploid cells to peri-acrosomal and the tail in mature sperm. To investigate the in vivo effects of SLIRP, we generated a SLIRP knockout (KO) mouse. This animal is viable, but sub-fertile. Specifically, when homozygous KO males are crossed with wild type (WT) females the resultant average litter size is reduced by approximately one third compared with those produced by WT males and females. Further, SLIRP KO mice produced significantly fewer progressively motile sperm than WT animals. Electron microscopy identified disruption of the mid-piece/annulus junction in homozygous KO sperm and altered mitochondrial morphology. In sum, our data implicates SLIRP in regulating male fertility, wherein its loss results in asthenozoospermia associated with compromised sperm structure and mitochondrial morphology.
doi:10.1371/journal.pone.0070700
PMCID: PMC3744554  PMID: 23976951
10.  Polyandry as a mediator of sexual selection before and after mating 
The Darwin–Bateman paradigm recognizes competition among males for access to multiple mates as the main driver of sexual selection. Increasingly, however, females are also being found to benefit from multiple mating so that polyandry can generate competition among females for access to multiple males, and impose sexual selection on female traits that influence their mating success. Polyandry can reduce a male's ability to monopolize females, and thus weaken male focused sexual selection. Perhaps the most important effect of polyandry on males arises because of sperm competition and cryptic female choice. Polyandry favours increased male ejaculate expenditure that can affect sexual selection on males by reducing their potential reproductive rate. Moreover, sexual selection after mating can ameliorate or exaggerate sexual selection before mating. Currently, estimates of sexual selection intensity rely heavily on measures of male mating success, but polyandry now raises serious questions over the validity of such approaches. Future work must take into account both pre- and post-copulatory episodes of selection. A change in focus from the products of sexual selection expected in males, to less obvious traits in females, such as sensory perception, is likely to reveal a greater role of sexual selection in female evolution.
doi:10.1098/rstb.2012.0042
PMCID: PMC3576577  PMID: 23339234
Bateman gradient; direct and indirect benefits; mating competition; sex roles; sperm competition; variation in reproductive success
11.  Tissue-Specific Transcriptomics in the Field Cricket Teleogryllus oceanicus 
G3: Genes|Genomes|Genetics  2013;3(2):225-230.
Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection—testis and accessory gland—would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.
doi:10.1534/g3.112.004341
PMCID: PMC3564983  PMID: 23390599
field cricket; gryllid; reference transcriptome; Teleogryllus oceanicus; tissue-specific transcriptome
12.  Divergence in genital morphology may contribute to mechanical reproductive isolation in a millipede 
Ecology and Evolution  2013;3(2):334-343.
Genitalia appear to evolve rapidly and divergently in taxa with internal fertilization. The current consensus is that intense directional sexual selection drives the rapid evolution of genitalia. Recent research on the millipede Antichiropus variabilis suggests that the male genitalia are currently experiencing stabilizing selection – a pattern of selection expected for lock-and-key structures that enforce mate recognition and reproductive isolation. Here, we investigate how divergence in genital morphology affects reproductive compatibility among isolated populations of A. variabilis. Females from a focal population were mated first to a male from their own population and, second, to a male from one of two populations with divergent genital morphology. We observed variation in mating behavior that might indicate the emergence of precopulatory reproductive barriers: males from one divergent population took significantly longer to recognize females and exhibited mechanical difficulty in genital insertion. Moreover, we observed very low paternity success for extra-population males who were successful in copulating. Our data suggest that divergence in genital shape may be contributing to reproductive isolation, and incipient speciation among isolated populations of A. variabilis.
doi:10.1002/ece3.466
PMCID: PMC3586643  PMID: 23467632
Lock-and-key; male genitalia; Millipede; population cross; sexual selection; species mate recognition
13.  Short-term phenotypic plasticity in long-chain cuticular hydrocarbons 
Cuticular hydrocarbons provide arthropods with the chemical equivalent of the visually extravagant plumage of birds. Their long chain length, together with the number and variety of positions in which methyl branches and double bonds occur, provide cuticular hydrocarbons with an extraordinary level of information content. Here, we demonstrate phenotypic plasticity in an individual's cuticular hydrocarbon profile. Using solid-phase microextraction, a chemical technique that enables multiple sampling of the same individual, we monitor short-term changes in cuticular hydrocarbon profiles of individual crickets, Teleogryllus oceanicus, in response to a social challenge. We experimentally manipulate the dominance status of males and find that dominant males, on losing fights with other dominant males, change their hydrocarbon profile to more closely resemble that of a subordinate. This result demonstrates that cuticular hydrocarbons can be far more responsive to changes in social dominance than previously realized.
doi:10.1098/rspb.2011.0159
PMCID: PMC3158943  PMID: 21367785
social status; dominance; solid-phase microextraction; gas chromatography
14.  Maternal effects on male weaponry: female dung beetles produce major sons with longer horns when they perceive higher population density 
Background
Maternal effects are environmental influences on the phenotype of one individual that are due to the expression of genes in its mother, and are expected to evolve whenever females are better capable of assessing the environmental conditions that their offspring will experience than the offspring themselves. In the dung beetle Onthophagus taurus, conditional male dimorphism is associated with alternative reproductive tactics: majors fight and guard females whereas minors sneak copulations. Furthermore, variation in dung beetle population density has different fitness consequences for each male morph, and theory predicts that higher population density might select for a higher frequency of minors and/or greater expenditure on weaponry in majors. Because adult dung beetles provide offspring with all the nutritional resources for their development, maternal effects strongly influence male phenotype.
Results
Here we tested whether female O. taurus are capable of perceiving population density, and responding by changing the phenotype of their offspring. We found that mothers who were reared with other conspecifics in their pre-mating period produced major offspring that had longer horns across a wider range of body sizes than the major offspring of females that were reared in isolation in their pre-mating period. Moreover, our results indicate that this maternal effect on male weaponry does not operate through the amount of dung provided by females to their offspring, but is rather transmitted through egg or brood mass composition. Finally, although theory predicts that females experiencing higher density might produce more minor males, we found no support for this, rather the best fitting models were equivocal as to whether fewer or the same proportions of minors were produced.
Conclusions
Our study describes a new type of maternal effect in dung beetles, which probably allows females to respond to population density adaptively, preparing at least their major offspring for the sexual competition they will face in the future. This new type of maternal effect in dung beetles represents a novel transgenerational response of alternative reproductive tactics to population density.
doi:10.1186/1471-2148-12-118
PMCID: PMC3506554  PMID: 22823456
Maternal effects; Population density; Male dimorphism; Polyphenism; Phenotypic plasticity
15.  Offspring viability benefits but no apparent costs of mating with high quality males 
Biology Letters  2010;7(3):419-421.
Traditional models of sexual selection posit that male courtship signals evolve as indicators of underlying male genetic quality. An alternative hypothesis is that sexual conflict over mating generates antagonistic coevolution between male courtship persistence and female resistance. In the scarabaeine dung beetle Onthophagus taurus, females are more likely to mate with males that have high courtship rates. Here, we examine the effects of exposing females to males with either high or low courtship rates on female lifetime productivity and offspring viability. Females exposed to males with high courtship rates mated more often and produced offspring with greater egg–adult viability. Female productivity and lifespan were unaffected by exposure to males with high courtship rates. The data are consistent with models of sexual selection based on indirect genetic benefits, and provide little evidence for sexual conflict in this system.
doi:10.1098/rsbl.2010.0976
PMCID: PMC3097854  PMID: 21123248
female choice; genetic benefits; sexual conflict; courtship rate
16.  Ejaculate Economics: Testing the Effects of Male Sexual History on the Trade-Off between Sperm and Immune Function in Australian Crickets 
PLoS ONE  2012;7(1):e30172.
Trade-offs between investment into male sexual traits and immune function provide the foundation for some of the most prominent models of sexual selection. Post-copulatory sexual selection on the male ejaculate is intense, and therefore trade-offs should occur between investment into the ejaculate and the immune system. Examples of such trade-offs exist, including that between sperm quality and immunity in the Australian cricket, Teleogryllus oceanicus. Here, we explore the dynamics of this trade-off, examining the effects that increased levels of sexual interaction have on the viability of a male's sperm across time, and the concomitant effects on immune function. Males were assigned to a treatment, whereby they cohabited with females that were sexually immature, sexually mature but incapable of copulation, or sexually mature and capable of copulation. Sperm viability of each male was then assessed at two time points: six and 13 days into the treatment, and immune function at day 13. Sperm viability decreased across the time points, but only for males exposed to treatment classes involving sexually mature females. This decrease was similar in magnitude across both sexually mature classes, indicating that costs to the expression of high sperm viability are incurred largely through levels of pre-copulatory investment. Males exposed to immature females produced sperm of low viability at both time points. Although we confirmed a weak negative association between sperm viability and lytic activity (a measure of immune response to bacterial infection) at day 13, this relationship was not altered across the mating treatment. Our results highlight that sperm viability is a labile trait, costly to produce, and subject to strategic allocation in these crickets.
doi:10.1371/journal.pone.0030172
PMCID: PMC3256214  PMID: 22253916
17.  Low Pitched Voices Are Perceived as Masculine and Attractive but Do They Predict Semen Quality in Men? 
PLoS ONE  2011;6(12):e29271.
Women find masculinity in men's faces, bodies, and voices attractive, and women's preferences for men's masculine features are thought to be biological adaptations for finding a high quality mate. Fertility is an important aspect of mate quality. Here we test the phenotype-linked fertility hypothesis, which proposes that male secondary sexual characters are positively related to semen quality, allowing females to obtain direct benefits from mate choice. Specifically, we examined women's preferences for men's voice pitch, and its relationship with men's semen quality. Consistent with previous voice research, women judged lower pitched voices as more masculine and more attractive. However men with lower pitched voices did not have better semen quality. On the contrary, men whose voices were rated as more attractive tended to have lower concentrations of sperm in their ejaculate. These data are more consistent with a trade off between sperm production and male investment in competing for and attracting females, than with the phenotype-linked fertility hypothesis.
doi:10.1371/journal.pone.0029271
PMCID: PMC3244455  PMID: 22216228
18.  Facial Attractiveness Ratings from Video-Clips and Static Images Tell the Same Story 
PLoS ONE  2011;6(11):e26653.
Most of what we know about what makes a face attractive and why we have the preferences we do is based on attractiveness ratings of static images of faces, usually photographs. However, several reports that such ratings fail to correlate significantly with ratings made to dynamic video clips, which provide richer samples of appearance, challenge the validity of this literature. Here, we tested the validity of attractiveness ratings made to static images, using a substantial sample of male faces. We found that these ratings agreed very strongly with ratings made to videos of these men, despite the presence of much more information in the videos (multiple views, neutral and smiling expressions and speech-related movements). Not surprisingly, given this high agreement, the components of video-attractiveness were also very similar to those reported previously for static-attractiveness. Specifically, averageness, symmetry and masculinity were all significant components of attractiveness rated from videos. Finally, regression analyses yielded very similar effects of attractiveness on success in obtaining sexual partners, whether attractiveness was rated from videos or static images. These results validate the widespread use of attractiveness ratings made to static images in evolutionary and social psychological research. We speculate that this validity may stem from our tendency to make rapid and robust judgements of attractiveness.
doi:10.1371/journal.pone.0026653
PMCID: PMC3214014  PMID: 22096491
19.  Sperm midpiece length predicts sperm swimming velocity in house mice 
Biology Letters  2010;6(4):513-516.
Evolutionary biologists have argued that there should be a positive relationship between sperm size and sperm velocity, and that these traits influence a male's sperm competitiveness. However, comparative analyses investigating the evolutionary associations between sperm competition risk and sperm morphology have reported inconsistent patterns of association, and in vitro sperm competition experiments have further confused the issue; in some species, males with longer sperm achieve more competitive fertilization, while in other species males with shorter sperm have greater sperm competitiveness. Few investigations have attempted to address this problem. Here, we investigated the relationship between sperm morphology and sperm velocity in house mice (Mus domesticus). We conducted in vitro sperm velocity assays on males from established selection lines, and found that sperm midpiece size was the only phenotypic predictor of sperm swimming velocity.
doi:10.1098/rsbl.2009.1027
PMCID: PMC2936205  PMID: 20147311
sperm motility; sperm design; sperm competition; ejaculate quality
20.  Mating tactics determine patterns of condition dependence in a dimorphic horned beetle 
The persistence of genetic variability in performance traits such as strength is surprising given the directional selection that such traits experience, which should cause the fixation of the best genetic variants. One possible explanation is ‘genic capture’ which is usually considered as a candidate mechanism for the maintenance of high genetic variability in sexual signalling traits. This states that if a trait is ‘condition dependent’, with expression being strongly influenced by the bearer's overall viability, then genetic variability can be maintained via mutation-selection balance. Using a species of dimorphic beetle with males that gain matings either by fighting or by ‘sneaking’, we tested the prediction of strong condition dependence for strength, walking speed and testes mass. Strength was strongly condition dependent only in those beetles that fight for access to females. Walking speed, with less of an obvious selective advantage, showed no condition dependence, and testes mass was more condition dependent in sneaks, which engage in higher levels of sperm competition. Within a species, therefore, condition dependent expression varies between morphs, and corresponds to the specific selection pressures experienced by that morph. These results support genic capture as a general explanation for the maintenance of genetic variability in traits under directional selection.
doi:10.1098/rspb.2010.0257
PMCID: PMC2894909  PMID: 20335207
performance; condition dependence; strength; sperm competition; mating tactics; horned beetle
21.  Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus 
Background
Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection.
Results
We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance.
Conclusions
Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models.
doi:10.1186/1471-2148-11-222
PMCID: PMC3161011  PMID: 21791118
22.  Reproductive competition promotes the evolution of female weaponry 
Secondary sexual traits in females are a relatively rare phenomenon. Empirical studies have focused on the role of male mate choice in their evolution; however, recently it has been suggested that secondary sexual traits in females are more likely to be under selection via reproductive competition. We investigated female competition and the influence of female phenotype on fitness in Onthophagus sagittarius, a species of dung beetle that exhibits female-specific horns. We compared reproductive fitness when females were breeding in competition versus breeding alone and found that competition for breeding resources reduced fitness for all females, but that smaller individuals suffered a greater fitness reduction than larger individuals. When females were matched for body size, those with the longest horns gained higher reproductive fitness. The fitness function was positive and linear, favouring increased horn expression. Thus, we present evidence that female body size and horn size in O. sagittarius are under directional selection via competition for reproductive resources. Our study is a rare example of female contest competition selecting for female weaponry.
doi:10.1098/rspb.2009.2335
PMCID: PMC2880095  PMID: 20200030
reproductive competition; female horns; weaponry
23.  Seminal Fluid Affects Sperm Viability in a Cricket 
PLoS ONE  2011;6(3):e17975.
Recent studies have suggested that males may vary the quality of their ejaculates in response to sperm competition, although the mechanisms by which they do so remain unclear. The viability of sperm is an important aspect of ejaculate quality that determines competitive fertilization success in the field cricket Teleogryllus oceanicus. Using in vitro mixtures of sperm and seminal fluid from pairs of male crickets, we show that seminal fluid can affect the viability of sperm in this species. We found that males who invest greatly in the viability of their own sperm can enhance the viability of rival sperm, providing the opportunity for males to exploit the investments in sperm competition made by their rivals. Transitive effects of seminal fluids across the ejaculates of different males are expected to have important implications for the dynamics of male investments in sperm competition.
doi:10.1371/journal.pone.0017975
PMCID: PMC3063794  PMID: 21455309
24.  Experimental evolution of sperm competitiveness in a mammal 
Background
When females mate with multiple partners, sperm from rival males compete to fertilise the ova. Studies of experimental evolution have proven the selective action of sperm competition on male reproductive traits. However, while reproductive traits may evolve in response to sperm competition, this does not necessarily provide evidence that sperm competitive ability responds to selection. Indeed, a study of Drosophila failed to observe divergence in sperm competitive ability of males in lines selected for enhanced sperm offence and defence.
Results
Adopting the naturally polygamous house mouse (Mus domesticus) as our vertebrate model, we performed an experimental evolution study and observed genetic divergence in sperm quality; males from the polygamous selection lines produced ejaculates with increased sperm numbers and greater sperm motility compared to males from the monogamous lines. Here, after 12 generations of experimental evolution, we conducted competitive matings between males from lineages evolving under sperm competition and males from lineages subject to relaxed selection. We reduced variation in paternity arising from embryo mortality by genotyping embryos in utero at 14 days gestation. Our microsatellite data revealed a significant paternity bias toward males that evolved under the selective regime of sperm competition.
Conclusion
We provide evidence that the sperm competitiveness phenotype can respond to selection, and show that improved sperm quality translates to greater competitive fertilisation success in house mice.
doi:10.1186/1471-2148-11-19
PMCID: PMC3031236  PMID: 21251249
25.  Good Genes and Sexual Selection in Dung Beetles (Onthophagus taurus): Genetic Variance in Egg-to-Adult and Adult Viability 
PLoS ONE  2011;6(1):e16233.
Whether species exhibit significant heritable variation in fitness is central for sexual selection. According to good genes models there must be genetic variation in males leading to variation in offspring fitness if females are to obtain genetic benefits from exercising mate preferences, or by mating multiply. However, sexual selection based on genetic benefits is controversial, and there is limited unambiguous support for the notion that choosy or polyandrous females can increase the chances of producing offspring with high viability. Here we examine the levels of additive genetic variance in two fitness components in the dung beetle Onthophagus taurus. We found significant sire effects on egg-to-adult viability and on son, but not daughter, survival to sexual maturity, as well as moderate coefficients of additive variance in these traits. Moreover, we do not find evidence for sexual antagonism influencing genetic variation for fitness. Our results are consistent with good genes sexual selection, and suggest that both pre- and postcopulatory mate choice, and male competition could provide indirect benefits to females.
doi:10.1371/journal.pone.0016233
PMCID: PMC3022759  PMID: 21267411

Results 1-25 (44)