PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (94)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  The Cancer Diaspora: Metastasis beyond the seed and soil hypothesis 
Do cancer cells escape their confinement of their original habitat in the primary tumor or are they forced out by ecological changes in their home niche? Describing metastasis in terms of a simple one-way migration of cells from the primary to target organs is an insufficient concept to cover the nuances of cancer spread. A diaspora is the scattering of people away from an established homeland. To date, “diaspora” has been a uniquely human term utilized by social scientists, however, the application of the diaspora concept to metastasis may yield new biological insights as well as therapeutic paradigms. The diaspora paradigm takes into account and models several variables: the quality of the primary tumor microenvironment, the fitness of individual cancer cell migrants as well as migrant populations, the rate of bidirectional migration of cancer and host cells between cancer sites, and the quality of the target microenvironments to establish metastatic sites. Ecological scientific principles can be applied to the cancer diaspora to develop new therapeutic strategies. For example, ecological traps, habitats that lead to the extinction of a species, can be developed to attract cancer cells to a place where they can be better exposed to treatments or to cells of the immune system for improved antigen presentation. Merging the social science concept of diaspora with ecological and population sciences concepts can inform the cancer field to understand the biology of tumorigenesis and metastasis and inspire new ideas for therapy.
doi:10.1158/1078-0432.CCR-13-2158
PMCID: PMC3835696  PMID: 24100626
2.  Axl as a mediator of cellular growth and survival 
Oncotarget  2014;5(19):8818-8852.
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
PMCID: PMC4253401  PMID: 25344858
Axl; TAM receptors; Gas6; cancer; tyrosine kinase; proliferation; apoptosis; immune; migration; inhibitor
3.  Disrupting the Networks of Cancer 
Ecosystems are interactive systems involving communities of species and their abiotic environment. Tumors are ecosystems in which cancer cells act as invasive species interacting with native host cell species in an established microenvironment within the larger host biosphere. At its heart, to study ecology is to study interconnectedness. In ecologic science, an ecologic network is a representation of the biotic interactions in an ecosystem in which species (nodes) are connected by pairwise interactions (links). Ecologic networks and signaling network models have been used to describe and compare the structures of ecosystems. It has been shown that disruption of ecologic networks through the loss of species or disruption of interactions between them can lead to the destruction of the ecosystem. Often, the destruction of a single node or link is not enough to disrupt the entire ecosystem. The more complex the network and its interactions, the more difficult it is to cause the extinction of a species, especially without leveraging other aspects of the ecosystem. Similarly, successful treatment of cancer with a single agent is rarely enough to cure a patient without strategically modifying the support systems conducive to survival of cancer. Cancer cells and the ecologic systems they reside in can be viewed as a series of nested networks. The most effective new paradigms for treatment will be developed through application of scaled network disruption.
doi:10.1158/1078-0432.CCR-12-0366
PMCID: PMC4154593  PMID: 22442061
4.  Critical transitions in a game theoretic model of tumour metabolism 
Interface Focus  2014;4(4):20140014.
Tumour proliferation is promoted by an intratumoral metabolic symbiosis in which lactate from stromal cells fuels energy generation in the oxygenated domain of the tumour. Furthermore, empirical data show that tumour cells adopt an intermediate metabolic state between lactate respiration and glycolysis. This study models the metabolic symbiosis in the tumour through the formalism of evolutionary game theory. Our game model of metabolic symbiosis in cancer considers two types of tumour cells, hypoxic and oxygenated, while glucose and lactate are considered as the two main sources of energy within the tumour. The model confirms the presence of multiple intermediate stable states and hybrid energy strategies in the tumour. It predicts that nonlinear interaction between two subpopulations leads to tumour metabolic critical transitions and that tumours can obtain different intermediate states between glycolysis and respiration which can be regulated by the genomic mutation rate. The model can apply in the epithelial–stromal metabolic decoupling therapy.
doi:10.1098/rsfs.2014.0014
PMCID: PMC4071509  PMID: 25097747
tumour metabolism; game theory; Warburg effect; epithelial–stromal metabolic decoupling; metabolic symbiosis in cancer; lactate shuttle
5.  The Current State of Preclinical Prostate Cancer Animal Models 
The Prostate  2008;68(6):629-639.
Prostate cancer continues to be a major cause of morbidity and mortality in men around the world. The field of prostate cancer research continues to be hindered by the lack of relevant preclinical models to study tumorigenesis and to further development of effective prevention and therapeutic strategies. The Prostate Cancer Foundation held a Prostate Cancer Models Working Group (PCMWG) Summit on August 6th and 7th, 2007 to address these issues. The PCMWG reviewed the state of prostate cancer preclinical models and identified the current limitations of cell line, xenograft and genetically engineered mouse models that have hampered the transition of scientific findings from these models to human clinical trials. In addition the PCMWG identified administrative issues that inhibit the exchange of models and impede greater interactions between academic centers and these centers with industry. The PCMWG identified potential solutions for discovery bottlenecks that include: (1) insufficient number of models with insufficient molecular and biologic diversity to reflect human cancer, (2) a lack of understanding of the molecular events that define tumorigenesis, (3) a lack of tools for studying tumor–host interactions, (4) difficulty in accessing model systems across institutions, and (5) addressing why preclinical studies appear not to be predictive of human clinical trials. It should be possible to apply the knowledge gained molecular and epigenetic studies to develop new cell lines and models that mimic progressive and fatal prostate cancer and ultimately improve interventions.
doi:10.1002/pros.20726
PMCID: PMC3681409  PMID: 18213636
mouse; genetically engineered; cell lines
7.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer 
Nature  2012;487(7406):239-243.
Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains/losses, including ETS gene fusions, PTEN loss and androgen receptor (AR) amplification, that drive prostate cancer development and progression to lethal, metastatic castrate resistant prostate cancer (CRPC)1. As less is known about the role of mutations2–4, here we sequenced the exomes of 50 lethal, heavily-pretreated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment naïve, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPC (2.00/Mb) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1, which define a subtype of ETS fusionnegative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in ~1/3 of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Further, we identified recurrent mutations in multiple chromatin/histone modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with AR, which is required for AR-mediated signaling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signaling and increases tumour growth. Proteins that physically interact with AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX, and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signaling deregulated in prostate cancer, and prioritize candidates for future study.
doi:10.1038/nature11125
PMCID: PMC3396711  PMID: 22722839
8.  Centralized Research Recruitment - Evolving a Local Clinical Research Recruitment Web Application to Better Meet User Needs 
Recruiting volunteers into clinical research remains a significant challenge for many clinical research study teams, thus the Michigan Institute for Clinical and Health Research (MICHR) at the University of Michigan developed UMClinicalStudies (www.UMClinicalStudies.org) - a web application that links the community to a single gateway for clinical research. UMClinicalStudies (formerly named “Engage”) is an integral piece of MICHR's efforts to increase clinical research participation in order to advance medical discoveries. Despite the initial success of the application, barriers to research participation remain, including the applications accessibility for potential research volunteers and study team members. In response, new initiatives were instigated to identify user needs, in order to broaden the ability to simultaneously assist researchers in recruitment activities, while also aiding potential volunteers in the exploration of and participation in clinical research opportunities. To do this, improvements to the interface and functionality were identified and implemented for both the public and the research audiences through extensive system analysis, and through the application of human computer interactivity processes, resulting in significant improvements in usability and ultimately research volunteerism, indicating that utilizing such technology is pivotal in reaching broader audiences for clinical trial participation.
doi:10.1111/j.1752-8062.2011.00285.x
PMCID: PMC4010247  PMID: 22029810
9.  Cancer Stem Cells and their Role in Metastasis 
Pharmacology & therapeutics  2013;138(2):285-293.
Cancer stem cells (CSCs), which comprise a small fraction of cancer cells, are believed to constitute the origin of most human tumors. Considerable effort has been focused on identifying CSCs in multiple tumor types and identifying genetic signatures that distinguish CSCs from normal tissue stem cells. Many studies also suggest that CSCs serve as the basis of metastases. Yet, experimental evidence that CSCs are the basis of disseminated metastases has lagged behind the conceptual construct of CSCs. Recent work, however, has demonstrated that CSCs may directly or indirectly contribute to the generation of metastasis. Moreover, CSC heterogeneity may be largely responsible for the considerable complexity and organ specificity of metastases. In this review, we discuss the role of CSCs in metastasis and their potential as therapeutic targets.
doi:10.1016/j.pharmthera.2013.01.014
PMCID: PMC3602306  PMID: 23384596
Cancer stem cells; molecular marker; metastasis; epithelial to mesenchymal transition; circulating tumor cells; cancer therapeutic target
11.  Erythropoietin Supports the Survival of Prostate Cancer, But Not Growth and Bone Metastasis 
Journal of cellular biochemistry  2013;114(11):2471-2478.
Erythropoietin (Epo) is used in clinical settings to enhance hematopoietic function and to improve the quality of life for patients undergoing chemotherapy by reducing fatigue and the need for transfusions. However, several meta-analyses have revealed that Epo treatments are associated with an increased risk of mortality in cancer patients. In this study, we examined the role of Epo in prostate cancer (PCa) progression, using in vitro cell culture systems and in vivo bone metastatic assays. We found that Epo did not stimulate the proliferation of PCa cell lines, but did protect PCa cells from apoptosis. In animal models of PCa metastasis, no evidence was found to support the hypothesis that Epo enhances metastasis. Together, these findings suggest that Epo may be useful for treating severe anemia in PCa patients without increasing metastatic risk.
doi:10.1002/jcb.24592
PMCID: PMC3978144  PMID: 23696192
PROSTATE; CANCER; ERYTHROPOIETIN; TUMOR; GROWTH; METASTASIS
12.  Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions 
Expression of parathyroid hormone-related protein (PTHrP) correlates with prostate cancer skeletal progression; however, the impact of prostate cancer-derived PTHrP on the microenvironment and osteoblastic lesions in skeletal metastasis has not been completely elucidated. In this study, PTHrP overexpressing prostate cancer clones were stably established by transfection of full length rat PTHrP cDNA. Expression and secretion of PTHrP were verified by western blotting and IRMA assay. PTHrP overexpressing prostate cancer cells had higher growth rates in vitro, and generated larger tumors when inoculated subcutaneously into athymic mice. The impact of tumor-derived PTHrP on bone was investigated using a vossicle co-implant model. Histology revealed increased bone mass adjacent to PTHrP overexpressing tumor foci, with increased osteoblastogenesis, osteoclastogenesis and angiogenesis. In vitro analysis demonstrated pro-osteoclastic and pro-osteoblastic effects of PTHrP. PTHrP enhanced proliferation of bone marrow stromal cells and early osteoblast differentiation. PTHrP exerted a pro-angiogenic effect indirectly, as it increased angiogenesis but only in the presence of bone marrow stromal cells. These data suggest PTHrP plays a role in tumorigenesis in prostate cancer, and that PTHrP is a key mediator for communication and interactions between prostate cancer and the bone microenvironment. Prostate cancer-derived PTHrP is actively involved in osteoblastic skeletal progression.
doi:10.1002/ijc.23602
PMCID: PMC3979464  PMID: 18729185
parathyroid hormone-related protein; PTHrP; skeletal metastasis; prostate carcinoma; angiogenesis
13.  A bioinformatics approach reveals novel interactions of the OVOL transcription factors in the regulation of epithelial – mesenchymal cell reprogramming and cancer progression 
BMC Systems Biology  2014;8:29.
Background
Mesenchymal to Epithelial Transition (MET) plasticity is critical to cancer progression, and we recently showed that the OVOL transcription factors (TFs) are critical regulators of MET. Results of that work also posed the hypothesis that the OVOLs impact MET in a range of cancers. We now test this hypothesis by developing a model, OVOL Induced MET (OI-MET), and sub-model (OI-MET-TF), to characterize differential gene expression in MET common to prostate cancer (PC) and breast cancer (BC).
Results
In the OI-MET model, we identified 739 genes differentially expressed in both the PC and BC models. For this gene set, we found significant enrichment of annotation for BC, PC, cancer, and MET, as well as regulation of gene expression by AP1, STAT1, STAT3, and NFKB1. Focusing on the target genes for these four TFs plus the OVOLs, we produced the OI-MET-TF sub-model, which shows even greater enrichment for these annotations, plus significant evidence of cooperation among these five TFs. Based on known gene/drug interactions, we prioritized targets in the OI-MET-TF network for follow-on analysis, emphasizing the clinical relevance of this work. Reflecting these results back to the OI-MET model, we found that binding motifs for the TF pair AP1/MYC are more frequent than expected and that the AP1/MYC pair is significantly enriched in binding in cancer models, relative to non-cancer models, in these promoters. This effect is seen in both MET models (solid tumors) and in non-MET models (leukemia). These results are consistent with our hypothesis that the OVOLs impact cancer susceptibility by regulating MET, and extend the hypothesis to include mechanisms not specific to MET.
Conclusions
We find significant evidence of the OVOL, AP1, STAT1, STAT3, and NFKB1 TFs having important roles in MET, and more broadly in cancer. We prioritize known gene/drug targets for follow-up in the clinic, and we show that the AP1/MYC TF pair is a strong candidate for intervention.
doi:10.1186/1752-0509-8-29
PMCID: PMC4008156  PMID: 24612742
Metastasis; Migration; Tumor progression; Systems biology; Transcription factors; Signal transduction; Therapeutics
14.  A Hierarchical Network of Transcription Factors Governs Androgen Receptor-Dependent Prostate Cancer Growth 
Molecular cell  2007;27(3):380-392.
SUMMARY
Androgen receptor (AR) is a ligand-dependent transcription factor that plays a key role in prostate cancer. Little is known about the nature of AR cis-regulatory sites in the human genome. We have mapped the AR binding regions on two chromosomes in human prostate cancer cells by combining chromatin immunoprecipitation (ChIP) with tiled oligonucleotide microarrays. We find that the majority of AR binding regions contain noncanonical AR-responsive elements (AREs). Importantly, we identify a noncanonical ARE as a cis-regulatory target of AR action in TMPRSS2, a gene fused to ETS transcription factors in the majority of prostate cancers. In addition, through the presence of enriched DNA-binding motifs, we find other transcription factors including GATA2 and Oct1 that cooperate in mediating the androgen response. These collaborating factors, together with AR, form a regulatory hierarchy that governs androgen-dependent gene expression and prostate cancer growth and offer potential new opportunities for therapeutic intervention.
doi:10.1016/j.molcel.2007.05.041
PMCID: PMC3947890  PMID: 17679089
15.  Endothelial integrin α3β1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane 
Oncotarget  2014;5(5):1382-1389.
Blood borne metastatic tumor cell adhesion to endothelial cells constitutes a critical rate-limiting step in hematogenous cancer metastasis. Interactions between cancer associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag) and endothelium-expressed galectin-3 (Gal-3) have been identified as the leading molecular mechanism initiating tumor/endothelial cell adhesion in several types of cancer. However, it is unknown how these rather weak and transient carbohydrate/lectin mediated interactions are stabilized. Here, using Western blot and LC tandem mass spectrometry analyses of pull-downs utilizing TF-Ag loaded gold nanoparticles, we identified Gal-3, endothelial integrin α3β1, Src kinase, as well as 5 additional molecules mapping onto focal adhesion pathway as parts of the macromolecular complexes formed at the endothelial cell membranes downstream of TF-Ag/Gal-3 interactions. In a modified parallel flow chamber assay, inhibiting α3β1 integrin greatly reduced the strength of tumor/endothelial cell interactions without affecting the initial cancer cell adhesion. Further, the macromolecular complex induced by TF-Ag/Gal-3/α3β1 interactions activates Src kinase, p38, and ERK1/2, pathways in endothelial cells in a time- and α3β1-dependent manner. We conclude that, following the initial metastatic cell attachment to endothelial cells mediated by TF-Ag/Gal-3 interactions, endothelial integrin α3β1 stabilizes tumor/endothelial cell adhesion and induces the formation of macromolecular signaling complex activating several major signaling pathways in endothelial cells.
PMCID: PMC4012737  PMID: 24675526
tumor metastasis; adhesion; Thomsen-Friedenreich antigen; galectin; integrin
16.  Characterization of bone metastases from rapid autopsies of prostate cancer patients 
Purpose
Bone is the most common metastatic site for prostate cancer, and osseous metastases are the leading cause of morbidity from this disease. Recent autopsy studies prove that 100% of men who die of prostate cancer have bone involvement. Understanding the biology of prostate cancer and its evolution to an incurable androgen independent phenotype requires an understanding of the genetic and cellular alterations that lead to the seeding and proliferation of tumor foci in bone, as well as the microenvironment in which these metastases arise. No intensive studies, however, have been conducted on osseous metastatic tissues from patients with metastatic prostate cancer due to lack of access to such tissues for profiling and other research.
Experimental Design
We demonstrate, for the first time, a reproducible methodology to obtain high quality clinical tumor tissues metastatic to the bone. This technique allowed the procurement of viable metastatic tumor tissue from involved bones in 13 recent autopsies conducted at the University of Michigan, and analyzed the gene expression of these tissues using real time PCR and microarrays.
Results
We present here the discovery of non-ossified bone metastases from multiple patients with advanced prostate cancer and their subsequent characterization and comparison to non-osseous metastases from the same patients
Conclusion
This represents a versatile and practical approach that may be employed to characterize the steps in metastasis and the phenotypic characteristics of osseous metastasis of prostate cancer and to profile RNA, DNA and cDNA from tumor samples metastatic to the bone.
doi:10.1158/1078-0432.CCR-10-3120
PMCID: PMC3117947  PMID: 21555375
Bone marrow; tumor; metastatic prostate cancer
17.  Definition of molecular determinants of prostate cancer cell bone extravasation 
Cancer research  2012;73(2):942-952.
Advanced prostate cancer (PCa) commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. PCa cells roll on E-selectin+ BMEC through E-selectin ligand-binding interactions under shear flow, and PCa cells exhibit firm adhesion to BMEC via β1, β4 and αVβ3 integrins in static assays. However, whether these discrete PCa cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Herein, we describe how metastatic PCa cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. PCa cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic PCa tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. PCa cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1 and Rap1 were constitutively active. In homing studies, PCa cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases (α1,3 FT) in transgenic adenoma of mouse prostate (TRAMP) mice dramatically reduced PCa incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins and Rac/Rap1 GTPases in mediating PCa cell homing and entry into bone and offer new insight on the role of α1,3 fucosylation in PCa development.
doi:10.1158/0008-5472.CAN-12-3264
PMCID: PMC3548951  PMID: 23149920
fucosyltransferases; integrins; prostate cancer; E-selectin; homing
18.  Inhibition of Prostate Cancer Bone Metastasis by Synthetic TF Antigen Mimic/Galectin-3 Inhibitor Lactulose-l-Leucine1 
Neoplasia (New York, N.Y.)  2012;14(1):65-73.
Currently incurable, prostate cancer metastasis has a remarkable ability to spread to the skeleton. Previous studies demonstrated that interactions mediated by the cancer-associated Thomsen-Friedenreich glycoantigen (TF-Ag) and the carbohydrate-binding protein galectin-3 play an important role in several rate-limiting steps of cancer metastasis such as metastatic cell adhesion to bone marrow endothelium, homotypic tumor cell aggregation, and clonogenic survival and growth. This study investigated the ability of a synthetic small-molecular-weight nontoxic carbohydrate-based TF-Ag mimic lactulose-l-leucine (Lac-l-Leu) to inhibit these processes in vitro and, ultimately, prostate cancer bone metastasis in vivo. Using an in vivo mouse model, based on intracardiac injection of human PC-3 prostate carcinoma cells stably expressing luciferase, we investigated the ability of Lac-l-Leu to impede the establishment and growth of bone metastasis. Parallel-flow chamber assay, homotypic aggregation assay, modified Boyden chamber assay, and clonogenic growth assay were used to assess the effects of Lac-l-Leu on tumor cell adhesion to the endothelium, homotypic tumor cell aggregation, transendothelial migration, and clonogenic survival and growth, respectively. We report that daily intraperitoneal administration of Lac-l-Leu resulted in a three-fold (P < .05) decrease in metastatic tumor burden compared with the untreated control. Mechanistically, the effect of Lac-l-Leu, which binds and inhibits galectins by mimicking essential structural features of the TF-Ag, was associated with a dose-dependent inhibition of prostate cancer cell adhesion to bone marrow endothelium, homotypic aggregation, transendothelial migration, and clonogenic growth. We conclude that small-molecular-weight carbohydrate-based compounds targeting β-galactoside-mediated interactions could provide valuable means for controlling and preventing metastatic prostate cancer spread to the skeleton.
PMCID: PMC3281943  PMID: 22355275
19.  Circulating fibroblast-like cells in men with metastatic prostate cancer 
The Prostate  2012;73(2):176-181.
Background
Metastatic prostate cancer is an incurable disease. During the development of this disease, prostate cancer cells enter the bloodstream as single cells or clusters of cells. Prostate fibroblasts, a cancer-promoting cell type in the prostate cancer microenvironment, could in theory incorporate into these migrating cell clusters or follow cancer cells into the bloodstream through holes in the tumor vasculature. Based on this idea, we hypothesized that fibroblast-like cells, defined here as cytokeratin 8/18/19−/DAPI+/CD45−/vimentin+ cells, are present in the blood of men with metastatic prostate cancer.
Methods
Veridex’s CellSearch® System was used to immunomagnetically capture EpCAM+ cells and clusters of cells heterogeneous for EpCAM expression from the blood of men with metastatic prostate cancer, localized cancer, and no known cancer, and immunostain them for the presence of cytokeratins 8/18/19, a nucleus, CD45, and vimentin. Fibroblast-like cells were then quantified.
Results
Fibroblast-like cells were present in 58.3% of men with metastatic prostate cancer but not in any men with localized prostate cancer or no known cancer. The presence of these cells correlated with certain known indicators of poor prognosis: ≥5 circulating tumor cells, defined here as cytokeratin 8/18/19+/DAPI+/CD45− cells, per 7.5 mL of blood, and a relatively high serum prostate-specific antigen level of ≥20 ng/mL.
Conclusions
The presence of fibroblast-like cells in the blood may provide prognostic information as well as information about the biology of metastatic prostate cancer.
doi:10.1002/pros.22553
PMCID: PMC3482413  PMID: 22718300
metastasis; blood; vimentin
20.  Successfully accelerating translational research at an academic medical center: The University of Michigan-Coulter Translational Research Partnership Program. 
Translational research encompasses the effective movement of new knowledge and discoveries into new approaches for prevention, diagnosis, and treatment of disease. There are many roadblocks to successful bench to bedside research, but few have received as much recent attention as the “valley of death”. The valley of death refers to the lack of funding and support for research that moves basic science discoveries into diagnostics, devices, and treatments in humans, and is ascribed to be the result of companies unwilling to fund research development that may not result in a drug or device that will be utilized in the clinic and conversely, the fact that researchers have no access to the funding needed to carry out preclinical and early clinical development to demonstrate potential efficacy in humans. The valley of death also exists because bridging the translational gap is dependent on successfully managing an additional four risks: Scientific, Intellectual Property, Market, and Regulatory. The University of Michigan (UM) has partnered with the Wallace H. Coulter Foundation (CF) to create a model providing an infrastructure to overcome these risks. This model is easily adoptable to other academic medical centers.
doi:10.1111/j.1752-8062.2010.00248.x
PMCID: PMC3075604  PMID: 21167009
22.  Identification of Targetable FGFR Gene Fusions in Diverse Cancers 
Cancer discovery  2013;3(6):636-647.
Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2 including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR gene fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Due to the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts which incorporate transcriptome analysis for gene fusions are poised to identify rare, targetable FGFR fusions across diverse cancer types.
doi:10.1158/2159-8290.CD-13-0050
PMCID: PMC3694764  PMID: 23558953
MI-ONCOSEQ; integrative clinical sequencing; FGFR fusions; driver mutations; therapeutic targets
23.  Multiple Roles of Chemokine (C-C Motif) Ligand 2 in Promoting Prostate Cancer Growth 
Prostate cancer continues to be the most common nonskin cancer diagnosed and the second leading cause of cancer death in men in the United States. Prostate cancer that has metastasized to bone remains incurable. The interactions between prostate cancer cells and the various cells of the host microenvironment result in enhanced growth of tumor cells and activation of host cells that together culminate in osteoblastic bone metastases. These dynamic tumor–host interactions are mediated by cancer and host-produced cytokines and chemokines. Among them, chemokine (C-C motif) ligand 2 (CCL2) has been identified as a prominent modulator of metastatic growth in the bone microenvironment. CCL2 is produced by bone marrow osteoblasts, endothelial cells, stromal cells, and prostate cancer cells. It has been demonstrated to modulate tumor-associated macrophage migration and promote osteoclast maturation. In addition, CCL2 functions through binding to its receptor CCR2 to induce prostate cell proliferation, migration, and invasion in both autocrine and paracrine manners. CCL2 protects prostate cancer cells from autophagic death by activating survivin through a PI3K/AKT (phosphatidylinositol 3-kinase/protein kinase B)–dependent mechanism. Inhibition of CCL2 substantially decreases macrophage infiltration, decreases osteoclast function, and inhibits prostate cancer growth in bone in preclinical animal models. The multiple roles of CCL2 in the tumor microenvironment make it an attractive therapeutic target in metastatic prostate cancer as well as in other cancers.
doi:10.1093/jnci/djq044
PMCID: PMC2857800  PMID: 20233997
24.  CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis 
CCL2 is a chemokine known to recruit monocytes and macrophages to sites of inflammation. A growing body of research suggests CCL2 is progressively overexpressed in tumor beds and may play a role in the clinical progression of solid tumors. Cancer cells derived from several solid tumor types demonstrate functional receptors for CCL2, suggesting this chemokine may achieve tumorigenicity through direct effects on malignant cells; however, a variety of normal host cells that co-exist with cancer in the tumor microenvironment also respond to CCL2. These cells include macrophages, osteoclasts, endothelial cells, T-lymphocytes, and myeloid-derived immune suppressor cells (MDSCs). CCL2 mediated interactions between normal and malignant cells in the tumor microenvironment and plays a multi-faceted role in tumor progression.
doi:10.1016/j.cytogfr.2009.11.009
PMCID: PMC2857769  PMID: 20005149
CCL2; CCR2; tumorigenesis; metastasis; prostate cancer
25.  Transcription Factors OVOL1 and OVOL2 Induce the Mesenchymal to Epithelial Transition in Human Cancer 
PLoS ONE  2013;8(10):e76773.
Cell plasticity regulated by the balance between the mesenchymal to epithelial transition (MET) and the opposite program, EMT, is critical in the metastatic cascade. Several transcription factors (TFs) are known to regulate EMT, though the mechanisms of MET remain unclear. We demonstrate a novel function of two TFs, OVOL1 and OVOL2, as critical inducers of MET in human cancers. Our findings indicate that the OVOL-TFs control MET through a regulatory feedback loop with EMT-inducing TF ZEB1, and the regulation of mRNA splicing by inducing Epithelial Splicing Regulatory Protein 1 (ESRP1). Using mouse prostate tumor models we show that expression of OVOL-TFs in mesenchymal prostate cancer cells attenuates their metastatic potential. The role of OVOL-TFs as inducers of MET is further supported by expression analyses in 917 cancer cell lines, suggesting their role as crucial regulators of epithelial-mesenchymal cell plasticity in cancer.
doi:10.1371/journal.pone.0076773
PMCID: PMC3790720  PMID: 24124593

Results 1-25 (94)