Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("osipow, C")
1.  Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells 
Oncogene  2009;29(2):201-213.
Approximately 80% of breast cancers express the estrogen receptor-α (ERα) and are treated with anti-estrogens. Resistance to these agents is a major cause of mortality. We have shown that estrogen inhibits Notch, whereas anti-estrogens or estrogen withdrawal activate Notch signaling. Combined inhibition of Notch and estrogen signaling has synergistic effects in ERα-positive breast cancer models. However, the mechanisms whereby Notch-1 promotes the growth of ERα-positive breast cancer cells are unknown. Here, we demonstrate that Notch-1 increases the transcription of ERα-responsive genes in the presence or absence of estrogen via a novel chromatin crosstalk mechanism. Our data support a model in which Notch-1 can activate the transcription of ERα-target genes via IKKα-dependent cooperative chromatin recruitment of Notch–CSL–MAML1 transcriptional complexes (NTC) and ERα, which promotes the recruitment of p300. CSL binding elements frequently occur in close proximity to estrogen-responsive elements (EREs) in the human and mouse genomes. Our observations suggest that a hitherto unknown Notch-1/ERα chromatin crosstalk mediates Notch signaling effects in ERα-positive breast cancer cells and contributes to regulate the transcriptional functions of ERα itself.
PMCID: PMC4976641  PMID: 19838210
breast cancer; estrogen; ERα; IKKα; Notch-1
2.  Crosstalk between PKCα and Notch-4 in endocrine-resistant breast cancer cells 
Oncogenesis  2013;2(8):e60-.
The Notch pathway is functionally important in breast cancer. Notch-1 has been reported to maintain an estrogen-independent phenotype in estrogen receptor α (ERα)+ breast cancer cells. Notch-4 expression correlates with Ki67. Notch-4 also plays a key role in breast cancer stem-like cells. Estrogen-independent breast cancer cell lines have higher Notch activity than estrogen-dependent lines. Protein kinase Cα (PKCα) overexpression is common in endocrine-resistant breast cancers and promotes tamoxifen (TAM)-resistant growth in breast cancer cell lines. We tested whether PKCα overexpression affects Notch activity and whether Notch signaling contributes to endocrine resistance in PKCα-overexpressing breast cancer cells.Analysis of published microarray data from ERα+ breast carcinomas shows that PKCα expression correlates strongly with Notch-4. Real-time reverse transcription PCR and immunohistochemistry on archival specimens confirmed this finding. In a PKCα-overexpressing, TAM-resistant T47D model, PKCα selectively increases Notch-4, but not Notch-1, expression in vitro and in vivo. This effect is mediated by activator protein-1 (AP-1) occupancy of the Notch-4 promoter. Notch-4 knockdown inhibits estrogen-independent growth of PKCα-overexpressing T47D cells, whereas Notch-4IC expression stimulates it. Gene expression profiling shows that multiple genes and pathways associated with endocrine resistance are induced in Notch-4IC- and PKCα-expressing T47D cells. In PKCα-overexpressing T47D xenografts, an orally active γ-secretase inhibitor at clinically relevant doses significantly decreased estrogen-independent tumor growth, alone and in combination with TAM. In conclusion, PKCα overexpression induces Notch-4 through AP-1. Notch-4 promotes estrogen-independent, TAM-resistant growth and activates multiple pathways connected with endocrine resistance and chemoresistance. Notch inhibitors should be clinically evaluated in PKCα- and Notch-4-overexpressing, endocrine-resistant breast cancers.
PMCID: PMC3759125  PMID: 23917222
Notch; breast cancer; endocrine therapy; PKCα
3.  Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence 
British Journal of Cancer  2011;105(6):796-806.
We reported that Notch-1, a potent breast oncogene, is activated in response to trastuzumab and contributes to trastuzumab resistance in vitro. We sought to determine the preclinical benefit of combining a Notch inhibitor (γ-secretase inhibitor (GSI)) and trastuzumab in both trastuzumab-sensitive and trastuzumab-resistant, ErbB-2-positive, BT474 breast tumours in vivo. We also studied if the combination therapy of lapatinib plus GSI can induce tumour regression of ErbB-2-positive breast cancer.
We generated orthotopic breast tumour xenografts from trastuzumab- or lapatinib-sensitive and trastuzumab-resistant BT474 cells. We investigated the antitumour activities of two distinct GSIs, LY 411 575 and MRK-003, in vivo.
Our findings showed that combining trastuzumab plus a GSI completely prevented (MRK-003 GSI) or significantly reduced (LY 411 575 GSI) breast tumour recurrence post-trastuzumab treatment in sensitive tumours. Moreover, combining lapatinib plus MRK-003 GSI showed significant reduction of tumour growth. Furthermore, a GSI partially reversed trastuzumab resistance in resistant tumours.
Our data suggest that a combined inhibition of Notch and ErbB-2 signalling pathways could decrease recurrence rates for ErbB-2-positive breast tumours and may be beneficial in the treatment of recurrent trastuzumab-resistant disease.
PMCID: PMC3171020  PMID: 21847123
ErbB-2; trastuzumab; Notch-1; GSI; recurrence; resistance

Results 1-3 (3)