Search tips
Search criteria

Results 1-25 (69)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors 
Science Advances  2015;1(6):e1500107.
Groucho-related corepressors in plants bind a peptide motif found in numerous repressors through a novel peptide recognition fold.
TOPLESS (TPL) and TOPLESS-related (TPR) proteins comprise a conserved family of plant transcriptional corepressors that are related to Tup1, Groucho, and TLE (transducin-like enhancer of split) corepressors in yeast, insects, and mammals. In plants, TPL/TPR corepressors regulate development, stress responses, and hormone signaling through interaction with small ethylene response factor–associated amphiphilic repression (EAR) motifs found in diverse transcriptional repressors. How EAR motifs can interact with TPL/TPR proteins is unknown. We confirm the amino-terminal domain of the TPL family of corepressors, which we term TOPLESS domain (TPD), as the EAR motif–binding domain. To understand the structural basis of this interaction, we determined the crystal structures of the TPD of rice (Os) TPR2 in apo (apo protein) state and in complexes with the EAR motifs from Arabidopsis NINJA (novel interactor of JAZ), IAA1 (auxin-responsive protein 1), and IAA10, key transcriptional repressors involved in jasmonate and auxin signaling. The OsTPR2 TPD adopts a new fold of nine helices, followed by a zinc finger, which are arranged into a disc-like tetramer. The EAR motifs in the three different complexes adopt a similar extended conformation with the hydrophobic residues fitting into the same surface groove of each OsTPR2 monomer. Sequence alignments and structure-based mutagenesis indicate that this mode of corepressor binding is highly conserved in a large set of transcriptional repressors, thus providing a general mechanism for gene repression mediated by the TPL family of corepressors.
PMCID: PMC4646777  PMID: 26601214
Topless; TPR; TPD; NINJA; EAR; IAA; jasmonate; auxin; Groucho; TUP1; TLE
2.  An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain 
Cell Discovery  2016;2:16042-.
The glucagon-like peptide-1 receptor is a class B G protein coupled receptor (GPCR) that plays key roles in glucose metabolism and is a major therapeutic target for diabetes. The classic two-domain model for class B GPCR activation proposes that the apo-state receptor is auto-inhibited by its extracellular domain, which physically interacts with the transmembrane domain. The binding of the C-terminus of the peptide hormone to the extracellular domain allows the N-terminus of the hormone to insert into the transmembrane domain to induce receptor activation. In contrast to this model, here we demonstrate that glucagon-like peptide-1 receptor can be activated by N-terminally truncated glucagon-like peptide-1 or exendin-4 when fused to the receptor, raising the question regarding the role of N-terminal residues of peptide hormone in glucagon-like peptide-1 receptor activation. Mutations of cysteine 347 to lysine or arginine in intracellular loop 3 transform the receptor into a G protein-biased receptor and allow it to be activated by a nonspecific five-residue linker that is completely devoid of exendin-4 or glucagon-like peptide-1 sequence but still requires the presence of an intact extracellular domain. Moreover, the extracellular domain can activate the receptor in trans in the presence of an intact peptide hormone, and specific mutations in three extracellular loops abolished this extracellular domain trans-activation. Together, our data reveal a dominant role of the extracellular domain in glucagon-like peptide-1 receptor activation and support an intrinsic agonist model of the extracellular domain, in which peptide binding switches the receptor from the auto-inhibited state to the auto-activated state by releasing the intrinsic agonist activity of the extracellular domain.
PMCID: PMC5118412  PMID: 27917297
GLP-1R; class B GPCR; intrinsic agonist; glucagon-like peptide-1; exendin-4; BETP
3.  Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3 
Cell Research  2015;25(11):1219-1236.
Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process.
PMCID: PMC4650425  PMID: 26470846
Strigolactones; D14; D3; GR24; receptor/co-receptor
4.  Generation and characterization of a human nanobody against VEGFR-2 
Acta Pharmacologica Sinica  2016;37(6):857-864.
Nanobody is an antibody fragment consisting of a single monomeric variable antibody domain, which can be used for a variety of biotechnological and therapeutic purposes. The aim of this work was to isolate and characterize a human signal domain antibody against VEGFR-2 domain3 (VEGFR D3) from a phage display library.
To produce antigen-specific recombinant nanobodies with high affinity to VEGFR2 D3, a liquid phase panning strategy was used for all rounds of panning. For nanobody expression and purification, four VEGFR2 D3-blocking clones were subcloned into a pETduet-biotin-MBP expression vector. The recombinant proteins carried an MBP tag to facilitate purification by affinity chromatography. Recombinant NTV(1–4) was obtained after an additional gel filtration chromatography step. The interactions between VEGFR2 D3 and NTV(1–4) were assessed with luminescence-based AlphaScreen assay and SPR assay. Anti-angiogenesis effects were examined in human umbilical vein endothelial cells (HUVECs).
In the AlphaScreen assay, NTV1 (100 and 200 nmol/L) elicited the highest binding signal with VEGFR2 D3; NTV2 showed moderate interactions with VEGFR2 D3; NTV3 and NTV4 exhibited little or no interaction with VEGFR2 D3. In the SPR assay, NTV1 displayed a high affinity for VEGFR2 D3 with an equilibrium dissociation constant (KD) of 49±1.8 nmol/L. NTV1 (1–1000 nmol/L) dose-dependently inhibited the proliferation of HUVECs and the endothelial tube formation by the HUVECs.
The nanobody NTV1 is a potential therapeutic candidate for blocking VEGFR2. This study provides a novel and promising strategy for development of VEGFR2-targeted nanobody-based cancer therapeutics.
PMCID: PMC4954766  PMID: 27108602
nanobody; VEGFR2; anticancer agent; anti-angiogenesis; phage display
5.  Discovery of a highly potent glucocorticoid for asthma treatment 
Cell discovery  2015;1:15035.
Glucocorticoids are the most effective treatment for asthma. However, their clinical applications are limited by low efficacy in severe asthma and by undesired side effects associated with high dose or prolonged use. The most successful approach to overcome these limitations has been the development of highly potent glucocorticoids that can be delivered to the lungs by inhalation to achieve local efficacy with minimal systemic effects. On the basis of our previous structural studies, we designed and developed a highly potent glucocorticoid, VSGC12, which showed an improved anti-inflammation activity in both cell-based reporter assays and cytokine inhibition experiments, as well as in a gene expression profiling of mouse macrophage RAW264.7 cells. In a mouse asthma model, VSGC12 delivered a higher efficacy than fluticasone furoate, a leading clinical compound, in many categories including histology and the number of differentiated immune cells. VSGC12 also showed a higher potency than fluticasone furoate in repressing most asthma symptoms. Finally, VSGC12 showed a better side effect profile than fluticasone furoate at their respective effective doses, including better insulin response and less bone loss in an animal model. The excellent therapeutic and side effect properties of VSGC12 provide a promising perspective for developing this potent glucocorticoid as a new effective drug for asthma.
PMCID: PMC4822341  PMID: 27066265
Glucocorticoids; glucocorticoid receptor; VSGC12; potency; asthma
6.  Tumor Targeting with Novel 6-Substituted Pyrrolo [2,3-d] Pyrimidine Antifolates with Heteroatom Bridge Substitutions Via Cellular Uptake by Folate Receptor α and the Proton-coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis 
Journal of medicinal chemistry  2016;59(17):7856-7876.
Targeted antifolates with heteroatom replacements of the carbon vicinal to the phenyl ring in 1 by N (4), O (8), or S (9), or with N-substituted formyl (5), acetyl (6), or trifluoroacetyl (7) moieties, were synthesized and tested for selective cellular uptake by folate receptor (FR) α and β or the proton-coupled folate transporter. Results show increased in vitro anti-proliferative activity toward engineered Chinese hamster ovary cells expressing FRs by 4–9 over the CH2 analog 1. Compounds 4–9 inhibited de novo purine biosynthesis and glycinamide ribonucleotide formyltransferase (GARFTase). X-ray crystal structures for 4 with FRα and GARFTase showed that the bound conformations of 4 required flexibility for attachment to both FRα and GARFTase. In mice bearing IGROV1 ovarian tumor xenografts, 4 was highly efficacious. Our results establish that heteroatom substitutions in the 3-atom bridge region of 6-substituted pyrrolo[2,3-d]pyrimidines related to 1 provide targeted antifolates that warrant further evaluation as anticancer agents.
Graphical abstract
PMCID: PMC5018213  PMID: 27458733
7.  Structural basis of the Norrin-Frizzled 4 interaction 
Cell Research  2015;25(9):1078-1081.
PMCID: PMC4559814  PMID: 26227961
8.  The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer 
Acta Pharmacologica Sinica  2016;37(9):1259-1272.
Dominant negative mutant G proteins have provided critical insight into the mechanisms of G protein-coupled receptor (GPCR) signaling, but the mechanisms underlying the dominant negative characteristics are not completely understood. The aim of this study was to determine the structure of the dominant negative Gαi1β1γ2 G203A/A326S complex (Gi-DN) and to reveal the structural basis of the mutation-induced phenotype of Gαi1β1γ2.
The three subunits of the Gi-DN complex were co-expressed with a baculovirus expression system. The Gi-DN heterotrimer was purified, and the structure of its complex with GDP was determined through X-ray crystallography.
The Gi-DN heterotrimer structure revealed a dual mechanism underlying the dominant negative characteristics. The mutations weakened the hydrogen bonding network between GDP/GTP and the binding pocket residues, and increased the interactions in the Gα-Gβγ interface. Concomitantly, the Gi-DN heterotrimer adopted a conformation, in which the C-terminus of Gαi and the N-termini of both the Gβ and Gγ subunits were more similar to the GPCR-bound state compared with the wild type complex. From these structural observations, two additional mutations (T48F and D272F) were designed that completely abolish the GDP binding of the Gi-DN heterotrimer.
Overall, the results suggest that the mutations impede guanine nucleotide binding and Gα-Gβγ protein dissociation and favor the formation of the G protein/GPCR complex, thus blocking signal propagation. In addition, the structure provides a rationale for the design of other mutations that cause dominant negative effects in the G protein, as exemplified by the T48F and D272F mutations.
PMCID: PMC5022103  PMID: 27498775
dominant negative; Gαi1β1γ2 heterotrimer; G203A; A326S; crystal structure; GPCR; GDP
9.  Structural basis of JAZ repression of MYC transcription factors in jasmonate signaling 
Nature  2015;525(7568):269-273.
The plant hormone jasmonate (JA) plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development1–7. Key mediators of JA signaling include MYC transcription factors, which are repressed by JAZ transcriptional repressors at the resting state. In the presence of active JA, JAZ proteins function as JA co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase8–11. The hormone-dependent formation of the COI1–JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins from transcriptional repression3,10,12. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. Here we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partially unwound helix, forms a complete α-helix that displaces the N-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Our study elucidates a novel molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.
PMCID: PMC4567411  PMID: 26258305
10.  Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio 
Cell Discovery  2016;2:16026-.
Mutations in the amyloid precursor protein (APP) gene and the aberrant cleavage of APP by γ-secretase are associated with Alzheimer’s disease (AD). Here we have developed a simple and sensitive cell-based assay to detect APP cleavage by γ-secretase. Unexpectedly, most familial AD (FAD)-linked APP mutations make APP partially resistant to γ-secretase. Mutations that alter residues N terminal to the γ-secretase cleavage site Aβ42 have subtle effects on cleavage efficiency and cleavage-site selectivity. In contrast, mutations that alter residues C terminal to the Aβ42 site reduce cleavage efficiency and dramatically shift cleavage-site specificity toward the aggregation-prone Aβ42. Moreover, mutations that remove positive charge at residue 53 greatly reduce the APP cleavage by γ-secretase. These results suggest a model of γ-secretase substrate recognition, in which the APP region C terminal to the Aβ42 site and the positively charged residue at position 53 are the primary determinants for substrate binding and cleavage-site selectivity. We further demonstrate that this model can be extended to γ-secretase processing of notch receptors, a family of highly conserved cell-surface signaling proteins.
PMCID: PMC4994064  PMID: 27625790
Alzheimer's disease; C99; γ-secretase; familial Alzheimer disease (FAD)-linked mutations; epsilon-cleavage assay
11.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser 
Nature  2015;523(7562):561-567.
G protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signaling to numerous G protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly, in which rhodopsin uses distinct structural elements, including TM7 and Helix 8 to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the N- and C- domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signaling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.
PMCID: PMC4521999  PMID: 26200343
12.  A novel prostate cancer therapeutic strategy using icaritin-activated arylhydrocarbon-receptor to co-target androgen receptor and its splice variants 
Carcinogenesis  2015;36(7):757-768.
Icaritin, can co-target both persistent AR and AR splice variants by arylhydrocarbon-receptor (AhR) mediated proteasomal degradation, inhibit AR transcriptional activity and induce apoptosis in AR-positive prostate cancer (PC) cells.
Persistent androgen receptor (AR) signaling is the key driving force behind progression and development of castration-resistant prostate cancer (CRPC). In many patients, AR COOH-terminal truncated splice variants (ARvs) play a critical role in contributing to the resistance against androgen depletion therapy. Unfortunately, clinically used antiandrogens like bicalutamide (BIC) and enzalutamide (MDV), which target the ligand binding domain, have failed to suppress these AR variants. Here, we report for the first time that a natural prenylflavonoid, icaritin (ICT), can co-target both persistent AR and ARvs. ICT was found to inhibit transcription of key AR-regulated genes, such as KLK3 [prostate-specific antigen (PSA)] and ARvs-regulated genes, such as UBE2C and induce apoptosis in AR-positive prostate cancer (PC) cells. Mechanistically, ICT promoted the degradation of both AR and ARvs by binding to arylhydrocarbon-receptor (AhR) to mediate ubiquitin-proteasomal degradation. Therefore, ICT impaired AR transactivation in PC cells. Knockdown of AhR gene restored AR stability and partially prevented ICT-induced growth suppression. In clinically relevant murine models orthotopically implanted with androgen-sensitive and CRPC cells, ICT was able to target AR and ARvs, to inhibit AR signaling and tumor growth with no apparent toxicity. Our results provide a mechanistic framework for the development of ICT, as a novel lead compound for AR-positive PC therapeutics, especially for those bearing AR splice variants.
PMCID: PMC4580537  PMID: 25908644
13.  X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex 
Scientific Data  2016;3:160021.
Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.
PMCID: PMC4828943  PMID: 27070998
Biological physics; G protein-coupled receptors; Nanocrystallography
15.  Discovery of a highly potent glucocorticoid for asthma treatment 
Cell Discovery  2015;1:15035-.
Glucocorticoids are the most effective treatment for asthma. However, their clinical applications are limited by low efficacy in severe asthma and by undesired side effects associated with high dose or prolonged use. The most successful approach to overcome these limitations has been the development of highly potent glucocorticoids that can be delivered to the lungs by inhalation to achieve local efficacy with minimal systemic effects. On the basis of our previous structural studies, we designed and developed a highly potent glucocorticoid, VSGC12, which showed an improved anti-inflammation activity in both cell-based reporter assays and cytokine inhibition experiments, as well as in a gene expression profiling of mouse macrophage RAW264.7 cells. In a mouse asthma model, VSGC12 delivered a higher efficacy than fluticasone furoate, a leading clinical compound, in many categories including histology and the number of differentiated immune cells. VSGC12 also showed a higher potency than fluticasone furoate in repressing most asthma symptoms. Finally, VSGC12 showed a better side effect profile than fluticasone furoate at their respective effective doses, including better insulin response and less bone loss in an animal model. The excellent therapeutic and side effect properties of VSGC12 provide a promising perspective for developing this potent glucocorticoid as a new effective drug for asthma.
PMCID: PMC4822341  PMID: 27066265
Glucocorticoids; glucocorticoid receptor; VSGC12; potency; asthma
17.  Cytoplasmic Tyrosine Phosphatase Shp2 Coordinates Hepatic Regulation of Bile Acid and FGF15/19 Signaling to Repress Bile Acid Synthesis 
Cell metabolism  2014;20(2):320-332.
Bile acid (BA) biosynthesis is tightly controlled by intrahepatic negative feedback signaling elicited by BA binding to farnesoid X receptor (FXR), and also by enterohepatic communication involving ileal BA reabsorption and FGF15/19 secretion. However, how these pathways are coordinated is poorly understood. We show here that non-receptor tyrosine phosphatase Shp2 is a critical player that couples and regulates the intrahepatic and enterohepatic signals for repression of BA synthesis. Ablating Shp2 in hepatocytes suppressed signal relay from FGFR4, receptor for FGF15/19, and attenuated BA activation of FXR signaling, resulting in elevation of systemic BA levels and chronic hepatobiliary disorders in mice. Acting immediately downstream of FGFR4, Shp2 associates with FRS2α and promotes the receptor activation and signal relay to several pathways. These results elucidate a molecular mechanism for the control of BA homeostasis by Shp2 through orchestration of multiple signals in hepatocytes.
PMCID: PMC4365973  PMID: 24981838
18.  Crystallization scale purification of α7 nicotinic acetylcholine receptor from mammalian cells using a BacMam expression system 
Acta Pharmacologica Sinica  2015;36(8):1013-1023.
To report our methods for expression and purification of α7 nicotinic acetylcholine receptor (α7-nAChR), a ligand-gated pentameric ion channel and an important drug target.
α7-nAChRs of 10 different species were cloned into an inducible BacMam vector with an N-terminal tag of a tandem maltose-binding protein (MBP) and a TEV cleavage site. This α7-nAChR fusion receptor was expressed in mammalian HEK293F cells and detected by Western blot. The expression was scaled up to liters. The receptor was purified using amylose resin and size-exclusion chromatography. The quality of the purified receptor was assessed using SDS-PAGE gels, thermal stability analysis, and negative stain electron microscopy (EM). The expression construct was optimized through terminal truncations and site-directed mutagenesis.
Expression screening revealed that α7-nAChR from Taeniopygia guttata had the highest expression levels. The fusion receptor was expressed mostly on the cell surface, and it could be efficiently purified using one-step amylose affinity chromatography. One to two milligrams of the optimized α7-nAChR expression construct were purified from one liter of cell culture. The purified α7-nAChR samples displayed high thermal stability with a Tm of 60 °C, which was further enhanced by antagonist binding but decreased in the presence of agonist. EM analysis revealed ring-like structures with a central hydrophilic hole, which was consistent with the pentameric assembly of the α7-nAChR channel.
We have established methods for crystallization scale expression and purification of α7-nAChR, which lays a foundation for high-resolution structural studies using X-ray crystallography or single particle cryo-EM analysis.
PMCID: PMC4564878  PMID: 26073323
α7-nAChR; membrane protein; receptor expression; receptor purification; BacMam; HEK293F cells
19.  High yield and efficient expression and purification of the human 5-HT3A receptor 
Acta Pharmacologica Sinica  2015;36(8):1024-1032.
To establish a method for efficient expression and purification of the human serotonin type 3A receptor (5-HT3A) that is suitable for structural studies.
Codon-optimized cDNA of human 5-HT3A was inserted into a modified BacMam vector, which contained an IgG leader sequence, an 8×His tag linked with two-Maltose Binding Proteins (MBP), and a TEV protease cleavage site. The BacMam construct was used to generate baculoviruses for expression of 5-HT3A in HEK293F cells. The proteins were solubilized from the membrane with the detergent C12E 9, and purified using MBP affinity chromatography. The affinity tag was removed by TEV protease treatment and immobilized metal ion affinity chromatography. The receptors were further purified by size-exclusion chromatography (SEC). Western blot and SDS-PAGE were used to detect 5-HT3A during purification. The purified receptor was used in crystallization and analyzed with negative stain electron microscopy (EM).
The BacMam system yielded 0.5 milligram of the human 5-HT3A receptor per liter of cells. MBP affinity purification resulted in good yields with high purity and homogeneity. SEC profiles indicated that the purified receptors were pentameric. No protein crystals were obtained; however, a reconstructed 3D density map generated from the negative stain EM data fitted well with the mouse 5-HT3A structure.
With the BacMam system, robust expression of the human 5-HT3A receptor is obtained, which is monodisperse, therefore enabling 3D reconstruction of an EM map. This method is suitable for high-throughput screening of different constructs, thus facilitating structural and biochemical studies of the 5-HT3A receptor.
PMCID: PMC4564879  PMID: 26073329
human 5-HT3A receptor; BacMam; expression and purification; negative stain electron microscopy; receptor structure
20.  Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery 
Acta Pharmacologica Sinica  2015;36(8):895-907.
The nicotinic acetylcholine receptors (nAChRs) and the 5-HT3 receptors (5-HT3Rs) are cation-selective members of the pentameric ligand-gated ion channels (pLGICs), which are oligomeric protein assemblies that convert a chemical signal into an ion flux through postsynaptic membrane. They are critical components for synaptic transmission in the nervous system, and their dysfunction contributes to many neurological disorders. The diverse subunit compositions of pLGICs give rise to complex mechanisms of ligand recognition, channel gating, and ion-selective permeability, which have been demonstrated in numerous electrophysiological and molecular biological studies, and unraveled by progress in studying the structural biology of this protein family. In this review, we discuss recent insights into the structural and functional basis of two cation-selective pLGICs, the nAChR and the 5-HT3R, including their subunit compositions, ligand binding, and channel gating mechanisms. We also discuss their relevant pharmacology and drug discovery for treating various neurological disorders. Finally, we review a model of two alternative ion conducting pathways based on the latest 5-HT3A crystal structure.
PMCID: PMC4564887  PMID: 26238288
nAChR; 5-HT3R; structure biology; subunit composition; channel activation; channel gating; ion selectivity; neurological disorders
21.  Upregulation of Glycans Containing 3’ Fucose in a Subset of Pancreatic Cancers Uncovered Using Fusion-Tagged Lectins 
Journal of proteome research  2015;14(6):2594-2605.
The fucose post-translational modification is frequently increased in pancreatic cancer, thus forming the basis for promising biomarkers, but a subset of pancreatic cancer patients does not elevate the known fucose-containing biomarkers. We hypothesized that such patients elevate glycan motifs with fucose in linkages and contexts different from the known fucose-containing biomarkers. We used a database of glycan array data to identify the lectins CCL2 to detect glycan motifs with fucose in a 3’ linkage; CGL2 for motifs with fucose in a 2’ linkage; and RSL for fucose in all linkages. We used several practical methods to test the lectins and determine the optimal mode of detection, and we then tested whether the lectins detected glycans in pancreatic cancer patients who did not elevate the sialyl-Lewis A glycan, which is upregulated in ~75% of pancreatic adenocarcinomas. Patients who did not upregulate sialyl-Lewis A, which contains fucose in a 4’ linkage, tended to upregulate fucose in a 3’ linkage, as detected by CCL2, but they did not upregulate total fucose or fucose in a 2’ linkage. CCL2 binding was high in cancerous epithelia from pancreatic tumors, including areas negative for sialyl-Lewis A and a related motif containing 3’ fucose, sialyl-Lewis X. Thus glycans containing 3’ fucose may complement sialyl-Lewis A to contribute to improved detection of pancreatic cancer. Furthermore, the use of panels of recombinant lectins may uncover details about glycosylation that could be important for characterizing and detecting cancer.
PMCID: PMC4511852  PMID: 25938165
lectins; fucose; biomarkers; glycans; glycan arrays; antibody-lectin sandwich arrays; pancreatic cancer; sialyl-Lewis A
22.  Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors 
Acta pharmacologica Sinica  2012;33(3):300-311.
Class B G-protein-coupled receptors (GPCRs) are receptors for peptide hormones that include glucagon, parathyroid hormone, and calcitonin. These receptors are involved in a wide spectrum of physiological activities, from metabolic regulation and stress control to development and maintenance of the skeletal system. As such, they are important drug targets for the treatment of diabetes, osteoporosis, and stress related disorders. Class B GPCRs are organized into two modular domains: an extracellular domain (ECD) and a helical bundle that contains seven transmembrane helices (TM domain). The ECD is responsible for the high affinity and specificity of hormone binding, and the TM domain is required for receptor activation and signal coupling to downstream G-proteins. Although the structure of the full-length receptor remains unknown, the ECD structures have been well characterized for a number of Class B GPCRs, revealing a common fold for ligand recognition. This review summarizes the general structural principles that guide hormone binding by Class B ECDs and their implications in the design of peptide hormone analogs for therapeutic purposes.
PMCID: PMC3690506  PMID: 22266723
G-protein-coupled receptor (GPCR); parathyroid hormone; glucagon; calcitonin; crystal structure
23.  Structure and activation of rhodopsin 
Acta pharmacologica Sinica  2012;33(3):291-299.
Rhodopsin is the first G-protein coupled receptor (GPCR) to have its three-dimensional structure solved by X-ray crystallography. The crystal structure of rhodopsin has revealed the molecular mechanism of photoreception and signal transduction in the visual system. Although several other GPCR crystal structures have been reported over the past few years, the rhodopsin structure remains an important model for understanding the structural and functional characteristics of other GPCRs. This review summarizes the structural features, the photoactivation, and the G protein signal transduction of rhodopsin.
PMCID: PMC3677203  PMID: 22266727
G protein-coupled receptor (GPCR); rhodopsin; crystal structure; photoactivation; transducin
24.  Structures and mechanism for the design of highly potent glucocorticoids 
Cell Research  2014;24(6):713-726.
The evolution of glucocorticoid drugs was driven by the demand of lowering the unwanted side effects, while keeping the beneficial anti-inflammatory effects. Potency is an important aspect of this evolution as many undesirable side effects are associated with use of high-dose glucocorticoids. The side effects can be minimized by highly potent glucocorticoids that achieve the same treatment effects at lower doses. This demand propelled the continuous development of synthetic glucocorticoids with increased potencies, but the structural basis of their potencies is poorly understood. To determine the mechanisms underlying potency, we solved the X-ray structures of the glucocorticoid receptor (GR) ligand-binding domain (LBD) bound to its endogenous ligand, cortisol, which has relatively low potency, and a highly potent synthetic glucocorticoid, mometasone furoate (MF). The cortisol-bound GR LBD revealed that the flexibility of the C1-C2 single bond in the steroid A ring is primarily responsible for the low affinity of cortisol to GR. In contrast, we demonstrate that the very high potency of MF is achieved by its C-17α furoate group completely filling the ligand-binding pocket, thus providing additional anchor contacts for high-affinity binding. A single amino acid in the ligand-binding pocket, Q642, plays a discriminating role in ligand potency between MF and cortisol. Structure-based design led to synthesis of several novel glucocorticoids with much improved potency and efficacy. Together, these results reveal key structural mechanisms of glucocorticoid potency and provide a rational basis for developing novel highly potent glucocorticoids.
PMCID: PMC4042175  PMID: 24763108
glucocorticoids; glucocorticoid receptor; potency; cortisol; mometasone furoate
25.  Catalytic mechanism and kinase interactions of ABA-signaling PP2C phosphatases 
Plant Signaling & Behavior  2012;7(5):581-588.
Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data and our previously determined crystal structures of ABI2 and the SnRK2.6–HAB1 complex, we present the catalytic mechanism of PP2C and provide new insight into PP2C–SnRK2 interactions and possible roles of other SnRK2 kinases in ABA signaling.
PMCID: PMC3419024  PMID: 22516825
PP2C; SnRK; PYR/PYL/RCAR; abscisic acid; X-ray crystal structure

Results 1-25 (69)