PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Wang, shull")
1.  Effect of Inlet and Outlet Flow Conditions on Natural Gas Parameters in Supersonic Separation Process 
PLoS ONE  2014;9(10):e110313.
A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.
doi:10.1371/journal.pone.0110313
PMCID: PMC4206423  PMID: 25338207
2.  Lysophosphatidic Acid Activates Peroxisome Proliferator Activated Receptor-γ in CHO Cells That Over-Express Glycerol 3-Phosphate Acyltransferase-1 
PLoS ONE  2011;6(4):e18932.
Lysophosphatidic acid (LPA) is an agonist for peroxisome proliferator activated receptor-γ (PPARγ). Although glycerol-3-phosphate acyltransferase-1 (GPAT1) esterifies glycerol-3-phosphate to form LPA, an intermediate in the de novo synthesis of glycerolipids, it has been assumed that LPA synthesized by this route does not have a signaling role. The availability of Chinese Hamster Ovary (CHO) cells that stably overexpress GPAT1, allowed us to analyze PPARγ activation in the presence of LPA produced as an intracellular intermediate. LPA levels in CHO-GPAT1 cells were 6-fold higher than in wild-type CHO cells, and the mRNA abundance of CD36, a PPARγ target, was 2-fold higher. Transactivation assays showed that PPARγ activity was higher in the cells that overexpressed GPAT1. PPARγ activity was enhanced further in CHO-GPAT1 cells treated with the PPARγ ligand troglitazone. Extracellular LPA, phosphatidic acid (PA) or a membrane-permeable diacylglycerol had no effect, showing that PPARγ had been activated by LPA generated intracellularly. Transient transfection of a vector expressing 1-acylglycerol-3-phosphate acyltransferase-2, which converts endogenous LPA to PA, markedly reduced PPARγ activity, as did over-expressing diacylglycerol kinase, which converts DAG to PA, indicating that PA could be a potent inhibitor of PPARγ. These data suggest that LPA synthesized via the glycerol-3-phosphate pathway can activate PPARγ and that intermediates of de novo glycerolipid synthesis regulate gene expression.
doi:10.1371/journal.pone.0018932
PMCID: PMC3080373  PMID: 21533082
3.  Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6−/− mice 
Journal of lipid research  2008;49(4):823.
Elucidation of the metabolic pathways of triacylglycerol (TAG) synthesis is critical to the understanding of chronic metabolic disorders such as obesity, cardiovascular disease, and diabetes. sn-Glycerol-3-phosphate acyltransferase (GPAT) and sn-1-acylglycerol-3-phosphate acyltransferase (AGPAT) catalyze the first and second steps in de novo TAG synthesis. AGPAT6 is one of eight AGPAT isoforms identified through sequence homology, but the enzyme activity for AGPAT6 has not been confirmed. We found that in liver and brown adipose tissue from Agpat6-deficient (Agpat6−/−) mice, N-ethylmaleimide (NEM)-sensitive GPAT specific activity was 65% lower than in tissues from wild-type mice, but AGPAT specific activity was similar. Overexpression of Agpat6 in Cos-7 cells increased an NEM-sensitive GPAT specific activity, but AGPAT specific activity was not increased. Agpat6 and Gpat1 overexpression in Cos-7 cells increased the incorporation of [14C]oleate into diacylglycerol (DAG) or into DAG and TAG, respectively, suggesting that the lysophosphatidic acid, phosphatidic acid, and DAG intermediates initiated by each of these isoforms lie in different cellular pools. Together, these data show that “Agpat6−/− mice” are actually deficient in a novel NEM-sensitive GPAT, GPAT4, and indicate that the alterations in lipid metabolism in adipose tissue, liver, and mammary epithelium of these mice are attributable to the absence of GPAT4
doi:10.1194/jlr.M700592-JLR200
PMCID: PMC2819352  PMID: 18192653
triacylglycerol; phospholipid; lipodystrophy; acyl-coenzyme A; steatosis; sn-l-acylglycerol-3-phosphate O-acyltransferase-deficient mice
4.  Hepatic Overexpression of Glycerol-sn-3-phosphate Acyltransferase 1 in Rats Causes Insulin Resistance* 
Fatty liver is commonly associated with insulin resistance and type 2 diabetes, but it is unclear whether triacylglycerol accumulation or an excess flux of lipid intermediates in the pathway of triacyglycerol synthesis are sufficient to cause insulin resistance in the absence of genetic or diet-induced obesity. To determine whether increased glycerolipid flux can, by itself, cause hepatic insulin resistance, we used an adenoviral construct to overexpress glycerol-sn-3-phosphate acyltransferase-1 (Ad-GPAT1), the committed step in de novo triacylglycerol synthesis. After 5–7 days, food intake, body weight, and fat pad weight did not differ between Ad-GPAT1 and Ad-enhanced green fluorescent protein control rats, but the chow-fed Ad-GPAT1 rats developed fatty liver, hyperlipidemia, and insulin resistance. Liver was the predominant site of insulin resistance; Ad-GPAT1 rats had 2.5-fold higher hepatic glucose output than controls during a hyperinsulinemic-euglycemic clamp. Hepatic diacylglycerol and lysophosphatidate were elevated in Ad-GPAT1 rats, suggesting a role for these lipid metabolites in the development of hepatic insulin resistance, and hepatic protein kinase Cε was activated, providing a potential mechanism for insulin resistance. Ad-GPAT1-treated rats had 50% lower hepatic NF-κB activity and no difference in expression of tumor necrosis factor-α and interleukin-β, consistent with hepatic insulin resistance in the absence of increased hepatic inflammation. Glycogen synthesis and uptake of 2-deoxyglucose were reduced in skeletal muscle, suggesting mild peripheral insulin resistance associated with a higher content of skeletal muscle triacylglycerol. These results indicate that increased flux through the pathway of hepatic de novo triacylglycerol synthesis can cause hepatic and systemic insulin resistance in the absence of obesity or a lipogenic diet.
doi:10.1074/jbc.M611550200
PMCID: PMC2819346  PMID: 17389595
5.  Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer 
The alteration of the choline metabolite profile is a well-established characteristic of cancer cells. In colorectal cancer (CRC), phosphatidylcholine is the most prominent phospholipid. In the present study, we report that lysophosphatidylcholine acyltransferase 1 (LPCAT1; NM_024830.3), the enzyme that converts lysophosphatidylcholine into phosphatidylcholine, was highly overexpressed in colorectal adenocarcinomas when compared to normal mucosas. Our microarray transcription profiling study showed a significant (p<10−8) transcript overexpression in 168 colorectal adenocarcinomas when compared to ten normal mucosas. Immunohistochemical analysis of colon tumors with a polyclonal antibody to LPCAT1 confirmed the upregulation of the LPCAT1 protein. Overexpression of LPCAT1 in COS7 cells localized the protein to the endoplasmic reticulum and the mitochondria and increased LPCAT1 specific activity 38-fold. In cultured cells, overexpressed LPCAT1 enhanced the incorporation of [14C]palmitate into phosphatidylcholine. COS7 cells transfected with LPCAT1 showed no growth rate alteration, in contrast to the colon cancer cell line SW480, which significantly (p<10−5) increased its growth rate by 17%. We conclude that LPCAT1 may contribute to total choline metabolite accumulation via phosphatidylcholine remodeling, thereby altering the CRC lipid profile, a characteristic of malignancy.
doi:10.1007/s00109-008-0409-0
PMCID: PMC2614561  PMID: 18974965
Colorectal cancer; Lysophosphatidic acyltransferase; Microarrays; Lipid metabolism; Phosphatidylcholine
6.  Cloning and functional characterization of a novel mitochondrialN-ethylmaleimide-sensitive glycerol-3-phosphate acyltransferase (GPAT2) 
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial and rate-limiting step in glycerolipid synthesis. Several mammalian GPAT activities have been recognized, including N-ethylmaleimide (NEM)-sensitive isoforms in microsomes and mitochondria and an NEM-resistant form in mitochondrial outer membrane (GPAT1). We have now cloned a second mitochondrial isoform, GPAT2 from mouse testis. The open reading frame encodes a protein of 798 amino acids with a calculated mass of 88.8 kDa and 27% amino acid identity to GPAT1. Testis mRNA expression was 50-fold higher than in liver or brown adipose tissue, but the specific activity of NEM-sensitive GPAT in testis mitochondria was similar to that in liver. When Cos-7 cells were transiently transfected with GPAT2, NEM-sensitive GPAT activity increased 30%. Confocal microscopy confirmed a mitochondrial location. Incubation of GPAT2-transfected Cos-7 cells with trace (3 μM; 0.25μCi) [1-14C]oleate for 6 h increased incorporation of [14C]oleate into TAG 84%. In contrast, incorporation into phospholipid species was lower than in control cells. Although a polyclonal antibody raised against full-length GPAT1 detected an ∼89 kDa band in liver and testis from GPAT1 null mice and both 89 and 80 kDa bands in BAT from the knockout animals, the GPAT2 protein expressed in Cos-7 cells was only 80 kDa. In vitro translation showed a single product of 89 kDa. Unlike GPAT1, GPAT2 mRNA abundance in liver was not altered by fasting or refeeding. GPAT2 is likely to have a specialized function in testis.
doi:10.1016/j.abb.2007.06.033
PMCID: PMC2133398  PMID: 17689486
7.  Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). 
Phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes phosphatidylcholine synthesis. PEMT knockout mice have fatty livers, and it is possible that, in humans, nonalcoholic fatty liver disease (NAFLD) might be associated with PEMT gene polymorphisms. DNA samples from 59 humans without fatty liver and from 28 humans with NAFLD were genotyped for a single nucleotide polymorphism in exon 8 of PEMT which leads to a V175M substitution. V175M is a loss of function mutation, as determined by transiently transfecting McArdle-RH7777 cells with constructs of wildtype PEMT open reading frame or the V175M mutant. Met/Met at residue 175 (loss of function SNP) occurred in 67.9% of the NAFLD subjects and in only 40.7% of control subjects (p< 0.03). For the first time we report that a polymorphism of the human PEMT gene (V175M) is associated with diminished activity and may confer susceptibility to NAFLD.
doi:10.1096/fj.04-3580com
PMCID: PMC1256033  PMID: 16051693
phosphatidylethanolamine N-methyltransferase (PEMT); choline; liver function; single nucleotide polymorphism (SNP); Nonalcoholic Fatty Liver Disease (NAFLD) pregnancy; neural tube defect (NTD); transfection; site-directed mutagenesis
8.  Mitochondrial Glycerol-3-Phosphate Acyltransferase-Deficient Mice Have Reduced Weight and Liver Triacylglycerol Content and Altered Glycerolipid Fatty Acid Composition 
Molecular and Cellular Biology  2002;22(23):8204-8214.
Microsomal and mitochondrial isoforms of glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyze the committed step in glycerolipid synthesis. The mitochondrial isoform, mtGPAT, was believed to control the positioning of saturated fatty acids at the sn-1 position of phospholipids, and nutritional, hormonal, and overexpression studies suggested that mtGPAT activity is important for the synthesis of triacylglycerol. To determine whether these purported functions were true, we constructed mice deficient in mtGPAT. mtGPAT−/− mice weighed less than controls and had reduced gonadal fat pad weights and lower hepatic triacylglycerol content, plasma triacylglycerol, and very low density lipoprotein triacylglycerol secretion. As predicted, in mtGPAT−/− liver, the palmitate content was lower in triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine. Positional analysis revealed that mtGPAT−/− liver phosphatidylethanolamine and phosphatidylcholine had about 21% less palmitate in the sn-1 position and 36 and 40%, respectively, more arachidonate in the sn-2 position. These data confirm the important role of mtGPAT in the synthesis of triacylglycerol, in the fatty acid content of triacylglycerol and cholesterol esters, and in the positioning of specific fatty acids, particularly palmitate and arachidonate, in phospholipids. The increase in arachidonate may be functionally significant in terms of eicosanoid production.
doi:10.1128/MCB.22.23.8204-8214.2002
PMCID: PMC134068  PMID: 12417724

Results 1-8 (8)