Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Equivalent binding of wild-type lipoprotein lipase (LPL) and S447X-LPL to GPIHBP1, the endothelial cell LPL transporter 
Biochimica et biophysica acta  2014;1841(7):963-969.
The S447X polymorphism in lipoprotein lipase (LPL), which shortens LPL by two amino acids, is associated with low plasma triglyceride levels and reduced risk for coronary heart disease. S447X carriers have higher LPL levels in the pre- and post-heparin plasma, raising the possibility that the S447X polymorphism leads to higher LPL levels within capillaries. One potential explanation for increased amounts of LPL in capillaries would be more avid binding of S447X-LPL to GPIHBP1 (the protein that binds LPL dimers and shuttles them to the capillary lumen). This explanation seems plausible because sequences within the carboxyl terminus of LPL are known to mediate LPL binding to GPIHBP1. To assess the impact of the S447X polymorphism on LPL binding to GPIHBP1, we compared the ability of internally tagged versions of wild-type LPL (WT-LPL) and S447X-LPL to bind to GPIHBP1 in both cell-based and cell-free binding assays. In the cell-based assay, we compared the binding of WT-LPL and S447X-LPL to GPIHBP1 on the surface of cultured cells. This assay revealed no differences in the binding of WT-LPL and S447X-LPL to GPIHBP1. In the cell-free assay, we compared the binding of internally tagged WT-LPL and S447X-LPL to soluble GPIHBP1 immobilized on agarose beads. Again, no differences in the binding of WT-LPL and S447X-LPL to GPIHBP1 were observed. We conclude that increased binding of S447X-LPL to GPIHBP1 is unlikely to be the explanation for more efficient lipolysis and lower plasma triglyceride levels in S447X carriers.
PMCID: PMC4212522  PMID: 24704550
2.  Discovery of New Liver X Receptor Agonists by Pharmacophore Modeling and Shape-Based Virtual Screening 
Agonists of liver X receptors (LXR) α and β are important regulators of cholesterol metabolism, but agonism of the LXRα subtype appears to cause hepatic lipogenesis, suggesting LXRβ-selective activators are attractive new lipid lowering drugs. In this work, pharmacophore modeling and shape-based virtual screening were combined to predict new LXRβ-selective ligands. Out of the 10 predicted compounds, three displayed significant LXR activity. Two activated both LXR subtypes. The third compound activated LXRβ 1.8-fold over LXRα.
PMCID: PMC3934620  PMID: 24502802
3.  Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1 
Human Molecular Genetics  2012;21(13):2961-2972.
Lipoprotein lipase (LPL) is a 448-amino-acid head-to-tail dimeric enzyme that hydrolyzes triglycerides within capillaries. LPL is secreted by parenchymal cells into the interstitial spaces; it then binds to GPIHBP1 (glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1) on the basolateral face of endothelial cells and is transported to the capillary lumen. A pair of amino acid substitutions, C418Y and E421K, abolish LPL binding to GPIHBP1, suggesting that the C-terminal portion of LPL is important for GPIHBP1 binding. However, a role for LPL's N terminus has not been excluded, and published evidence has suggested that only full-length homodimers are capable of binding GPIHBP1. Here, we show that LPL's C-terminal domain is sufficient for GPIHBP1 binding. We found, serendipitously, that two LPL missense mutations, G409R and E410V, render LPL susceptible to cleavage at residue 297 (a known furin cleavage site). The C terminus of these mutants (residues 298–448), bound to GPIHBP1 avidly, independent of the N-terminal fragment. We also generated an LPL construct with an in-frame deletion of the N-terminal catalytic domain (residues 50–289); this mutant was secreted but also was cleaved at residue 297. Once again, the C-terminal domain (residues 298–448) bound GPIHBP1 avidly. The binding of the C-terminal fragment to GPIHBP1 was eliminated by C418Y or E421K mutations. After exposure to denaturing conditions, the C-terminal fragment of LPL refolds and binds GPIHBP1 avidly. Thus, the binding of LPL to GPIHBP1 requires only the C-terminal portion of LPL and does not depend on full-length LPL homodimers.
PMCID: PMC3373243  PMID: 22493000
4.  Binding Preferences for GPIHBP1, a GPI-Anchored Protein of Capillary Endothelial Cells 
GPIHBP1, a glycosylphosphatidylinositol-anchored Ly6 protein of capillary endothelial cells, binds lipoprotein lipase (LPL) avidly, but its ability to bind related lipase family members has never been evaluated. We sought to define the ability of GPIHBP1 to bind other lipase family members as well as other apolipoproteins and lipoproteins.
Methods and Results
As judged by cell-based and cell-free binding assays, LPL binds to GPIHBP1 but other members of the lipase family do not. We also examined the binding of apoAV–phospholipid disks to GPIHBP1. ApoAV binds avidly to GPIHBP1-transfected cells; this binding requires GPIHBP1’s amino-terminal acidic domain and is independent of its cysteine-rich Ly6 domain (the latter domain is essential for LPL binding). GPIHBP1-transfected cells did not bind HDL. Chylomicrons binds avidly to GPIHBP1-transfected CHO cells, but this binding is dependent on GPIHBP1’s ability to bind LPL within the cell culture medium.
GPIHBP1 binds LPL but does not bind other lipase family members. GPIHBP1 binds apoAV but did not bind apoAI or HDL. The ability of GPIHBP1-transfected CHO cells to bind chylomicrons is mediated by LPL; chylomicron binding does not occur unless GPIHBP1 first captures LPL from the cell culture medium.
PMCID: PMC3004026  PMID: 20966398
lipoprotein lipase; chylomicronemia; hypertriglyceridemia; GPIHBP1
5.  Cholesterol Intake Modulates Plasma Triglyceride Levels in GPIHBP1-deficient Mice 
Adult GPIHBP1-deficient mice (Gpihbp1−/−) have severe hypertriglyceridemia; however, the plasma triglyceride levels are only mildly elevated during the suckling phase when lipoprotein lipase (Lpl) is expressed at high levels in the liver. Lpl expression in the liver can be induced in adult mice with dietary cholesterol. We therefore hypothesized that plasma triglyceride levels in adult Gpihbp1−/− mice would be sensitive to cholesterol intake.
Methods and Results
After 4–8 weeks on a western diet containing 0.15% cholesterol, plasma triglyceride levels in Gpihbp1−/− mice were 10,000–12,000 mg/dl. When 0.005% ezetimibe was added to the diet to block cholesterol absorption, Lpl expression in the liver was reduced significantly, and the plasma triglyceride levels were significantly higher (>15,000 mg/dl). We also assessed plasma triglyceride levels in Gpihbp1−/− mice fed western diets containing either high (1.3%) or low (0.05%) amounts of cholesterol. The high-cholesterol diet significantly increased Lpl expression in the liver and lowered plasma triglyceride levels.
Treatment of Gpihbp1−/− mice with ezetimibe lowers Lpl expression in the liver and increases plasma triglyceride levels. A high-cholesterol diet had the opposite effects. Thus, cholesterol intake modulates plasma triglyceride levels in Gpihbp1−/− mice.
PMCID: PMC2959134  PMID: 20814015
lipoprotein lipase; chylomicronemia; hypertriglyceridemia; GPIHBP1

Results 1-5 (5)