Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Bone marrow NR4A expression is not a dominant factor in the development of atherosclerosis or macrophage polarization in mice[S] 
Journal of Lipid Research  2013;54(3):806-815.
The formation of the atherosclerotic lesion is a complex process influenced by an array of inflammatory and lipid metabolism pathways. We previously demonstrated that NR4A nuclear receptors are highly induced in macrophages in response to inflammatory stimuli and modulate the expression of genes linked to inflammation in vitro. Here we used mouse genetic models to assess the impact of NR4A expression on atherosclerosis development and macrophage polarization. Transplantation of wild-type, Nur77−/−, or Nor1−/− null hematopoetic precursors into LDL receptor (LDLR)−/− recipient mice led to comparable development of atherosclerotic lesions after high-cholesterol diet. We also observed comparable induction of genes linked to M1 and M2 responses in wild-type and Nur77-null macrophages in response to lipopolysaccharides and interleukin (IL)-4, respectively. In contrast, activation of the nuclear receptor liver X receptor (LXR) strongly suppressed M1 responses, and ablation of signal transductor and activator of transcription 6 (STAT6) strongly suppressed M2 responses. Recent studies have suggested that alterations in levels of Ly6Clo monocytes may be a contributor to inflammation and atherosclerosis. In our study, loss of Nur77, but not Nor1, was associated with decreased abundance of Ly6Clo monocytes, but this change was not correlated with atherosclerotic lesion development. Collectively, our results suggest that alterations in the Ly6Clo monocyte population and bone marrow NR4A expression do not play dominant roles in macrophage polarization or the development of atherosclerosis in mice.
PMCID: PMC3617954  PMID: 23288947
Nur77; Ly6C; nuclear receptor
2.  Thyroid Hormone Receptor Repression Linked to Type I Pneumocyte Associated Respiratory Distress Syndrome 
Nature medicine  2011;17(11):1466-1472.
Although the lung is a defining feature of air-breathing animals, the pathway controlling the formation of the type I pneumocyte, the cell that mediates gas exchange, is poorly understood. In contrast, glucocorticoids and their cognate receptor (GR) have long been known to promote type II pneumocyte maturation; prenatal administration of glucocorticoids is commonly used to attenuate the severity of infant respiratory distress syndrome (RDS). Here we show that knock-in mutations of the nuclear corepressor SMRT in C57Bl6 mice (SMRTmRID) produces a novel respiratory distress syndrome due to prematurity of the type I pneumocyte. Though unresponsive to glucocorticoids, treatment with anti-thyroid hormone drugs (propylthiouracil or methimazole) completely rescues the SMRT-induced RDS, suggesting an unrecognized and essential role for the thyroid hormone receptor (TR) in lung development. We show that TR and SMRT control type I pneumocyte differentiation through Klf2, which in turn appears to directly activate the type I pneumocyte gene program. Conversely, mice without lung Klf2 lack mature type I pneumocytes and die shortly after birth, closely recapitulating the SMRTmRID phenotype. These results identify a second nuclear receptor, the TR, in type I pneumocyte differentiation and suggest a new type of therapeutic option in the treatment of glucocorticoid non-responsive RDS.
PMCID: PMC3210920  PMID: 22001906
3.  Esrrg functions in early branch generation of the ureteric bud and is essential for normal development of the renal papilla 
Human Molecular Genetics  2010;20(5):917-926.
Congenital anomalies of the kidney and urinary tract (CAKUTs) are common disorders of human development affecting the renal parechyma, renal pelvis, ureter, bladder and urethra; they show evidence of shared genetic aetiology, although the molecular basis of this remains unknown in the majority of cases. Breakpoint mapping of a de novo, apparently balanced, reciprocal translocation associated with bilateral renal agenesis has implicated the gene encoding the nuclear steroid hormone receptor ESRRG as a candidate gene for CAKUT. Here we show that the Esrrg protein is detected throughout early ureteric ducts as cytoplasmic/sub-membranous staining; with nuclear localization seen in developing nephrons. In 14.5–16.5 dpc (days post-conception) mouse embryos, Esrrg localizes to the subset of ductal tissue within the kidney, liver and lung. The renal ductal expression becomes localized to renal papilla by 18.5 dpc. Perturbation of function was performed in embryonic mouse kidney culture using pooled siRNA to induce knock-down and a specific small-molecule agonist to induce aberrant activation of Esrrg. Both resulted in severe abnormality of early branching events of the ureteric duct. Mouse embryos with a targeted inactivation of Esrrg on both alleles (Esrrg−/−) showed agenesis of the renal papilla but normal development of the cortex and remaining medulla. Taken together, these results suggest that Esrrg is required for early branching events of the ureteric duct that occur prior to the onset of nephrogenesis. These findings confirm ESRRG as a strong candidate gene for CAKUT.
PMCID: PMC3033182  PMID: 21138943
4.  Insulin Resistance and Altered Systemic Glucose Metabolism in Mice Lacking Nur77 
Diabetes  2009;58(12):2788-2796.
Nur77 is an orphan nuclear receptor with pleotropic functions. Previous studies have identified Nur77 as a transcriptional regulator of glucose utilization genes in skeletal muscle and gluconeogenesis in liver. However, the net functional impact of these pathways is unknown. To examine the consequence of Nur77 signaling for glucose metabolism in vivo, we challenged Nur77 null mice with high-fat feeding.
Wild-type and Nur77 null mice were fed a high-fat diet (60% calories from fat) for 3 months. We determined glucose tolerance, tissue-specific insulin sensitivity, oxygen consumption, muscle and liver lipid content, muscle insulin signaling, and expression of glucose and lipid metabolism genes.
Mice with genetic deletion of Nur77 exhibited increased susceptibility to diet-induced obesity and insulin resistance. Hyperinsulinemic-euglycemic clamp studies revealed greater high-fat diet–induced insulin resistance in both skeletal muscle and liver of Nur77 null mice compared with controls. Loss of Nur77 expression in skeletal muscle impaired insulin signaling and markedly reduced GLUT4 protein expression. Muscles lacking Nur77 also exhibited increased triglyceride content and accumulation of multiple even-chained acylcarnitine species. In the liver, Nur77 deletion led to hepatic steatosis and enhanced expression of lipogenic genes, likely reflecting the lipogenic effect of hyperinsulinemia.
Collectively, these data demonstrate that loss of Nur77 influences systemic glucose metabolism and highlight the physiological contribution of muscle Nur77 to this regulatory pathway.
PMCID: PMC2780886  PMID: 19741162
5.  Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle 
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidative muscle and is responsive to β-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including GLUT4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including GLUT4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by shRNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple innervation-dependent genes in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.
PMCID: PMC2602962  PMID: 17550977
Nur77; glucose metabolism; skeletal muscle
6.  Nuclear Receptors: Decoding Metabolic Disease 
FEBS letters  2007;582(1):2-9.
Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that regulate development, reproduction, and metabolism of lipids, drugs and energy. The importance of this family of proteins in metabolic disease is exemplified by NR ligands used in the clinic or under exploratory development for the treatment of diabetes mellitus, dyslipidemia, hypercholesterolemia, or other metabolic abnormalities. Genetic studies in humans and rodents support the notion that NRs control a wide variety of metabolic processes by regulating the expression of genes encoding key enzymes, transporters and other proteins involved in metabolic homeostasis. Current knowledge of complex NR metabolic networks is summarized here.
PMCID: PMC2254310  PMID: 18023286
orphan nuclear receptors; metabolic syndrome; obesity; insulin resistance; dyslipidemia
7.  A role for IRF3-dependent RXRα repression in hepatotoxicity associated with viral infections 
The Journal of Experimental Medicine  2006;203(12):2589-2602.
Viral infections and antiviral responses have been linked to several metabolic diseases, including Reye's syndrome, which is aspirin-induced hepatotoxicity in the context of a viral infection. We identify an interferon regulatory factor 3 (IRF3)–dependent but type I interferon–independent pathway that strongly inhibits the expression of retinoid X receptor α (RXRα) and suppresses the induction of its downstream target genes, including those involved in hepatic detoxification. Activation of IRF3 by viral infection in vivo greatly enhances bile acid– and aspirin-induced hepatotoxicity. Our results provide a critical link between the innate immune response and host metabolism, identifying IRF3-mediated down-regulation of RXRα as a molecular mechanism for pathogen-associated metabolic diseases.
PMCID: PMC2118146  PMID: 17074929
8.  Fat’s loss is bone’s gain 
Journal of Clinical Investigation  2004;113(6):805-806.
Osteoporosis, characterized by low bone mass and structural deterioration of bone tissue with an increased susceptibility to fractures, is a major public health threat to the elderly. Bone mass homeostasis in adults is maintained locally by the balance between osteoblastic bone formation and osteoclastic bone resorption. Haploinsufficiency of PPARγ, a key transcription factor implicated previously in adipogenesis, lipid metabolism, and glucose homeostasis, has now been shown to promote osteogenesis through enhanced osteoblast formation. These findings support a reciprocal relationship between the development of bone and fat, and may prompt further exploration of the PPAR pathway as a potential target for intervention in osteoporosis.
PMCID: PMC362126  PMID: 15067310
9.  Autoregulation of the Human Liver X Receptor α Promoter 
Molecular and Cellular Biology  2001;21(22):7558-7568.
Previous work has implicated the nuclear receptors liver X receptor α (LXRα) and LXRβ in the regulation of macrophage gene expression in response to oxidized lipids. Macrophage lipid loading leads to ligand activation of LXRs and to induction of a pathway for cholesterol efflux involving the LXR target genes ABCA1 and apoE. We demonstrate here that autoregulation of the LXRα gene is an important component of this lipid-inducible efflux pathway in human macrophages. Oxidized low-density lipoprotein, oxysterols, and synthetic LXR ligands induce expression of LXRα mRNA in human monocyte-derived macrophages and human macrophage cell lines but not in murine peritoneal macrophages or cell lines. This is in contrast to peroxisome proliferator-activated receptor γ (PPARγ)-specific ligands, which stimulate LXRα expression in both human and murine macrophages. We further demonstrate that LXR and PPARγ ligands cooperate to induce LXRα expression in human but not murine macrophages. Analysis of the human LXRα promoter led to the identification of multiple LXR response elements. Interestingly, the previously identified PPAR response element (PPRE) in the murine LXRα gene is not conserved in humans; however, a different PPRE is present in the human LXR 5′-flanking region. These results have implications for cholesterol metabolism in human macrophages and its potential to be regulated by synthetic LXR and/or PPARγ ligands. The ability of LXRα to regulate its own promoter is likely to be an integral part of the macrophage physiologic response to lipid loading.
PMCID: PMC99927  PMID: 11604492

Results 1-9 (9)